1. |
Sharma M, Patel V, Acharya U R. Automated identification of insomnia using optimal bi-orthogonal wavelet transform technique with single-channel EEG signals. Knowledge-Based Systems, 2021, 224: 107078-107083.
|
2. |
Dehnavi F, Moghimi S, Sadrabadi Haghighi S, et al. Opposite effect of motivated forgetting on sleep spindles during stage 2 and slow wave sleep. Sleep, 2019, 42(7): zsz085.
|
3. |
Shi Min, Yang Chengyi, Zhang Dalu, et al. A smart detection method of sleep quality using EEG signal and long short-term memory model. Mathematical Problems in Engineering, 2021, 2021: 5515100.
|
4. |
金峥, 贾克斌, 袁野. 基于混合注意力时序网络的睡眠分期算法研究. 生物医学工程学杂志, 2021, 38(2): 241-248.
|
5. |
Rechtschaffen A Q, Kales A A. A manual of standardized terminology techniques and scoring system for sleep stages of human subjects. Psychiatry and Clinical Neurosciences, 1968, 55: 356-361.
|
6. |
Ghimatgar H, Kazemi K, Helfroush M S, et al. An automatic single-channel EEG-based sleep stage scoring method based on hidden Markov model. Journal of Neuroscience Methods, 2019, 324: 108320.
|
7. |
Gupta V, Pachori R B. FBDM based time-frequency representation for sleep stages classification using EEG signals. Biomedical Signal Processing and Control, 2021, 64: 2265-2281.
|
8. |
Yan Rui, Zhang Chi, Spruyt K, et al. Multi-modality of polysomnography signals’ fusion for automatic sleep scoring. Biomedical Signal Processing and Control, 2019, 49: 14-23.
|
9. |
Kuo C E, Chen G T. Automatic sleep staging based on a hybrid stacked LSTM neural network: verification using large-scale dataset. IEEE Access, 2020, 8: 11837-11849.
|
10. |
Cui Jian, Lan Zirui, Liu Yisi, et al. A compact and interpretable convolutional neural network for cross-subject driver drowsiness detection from single-channel EEG. Methods, 2022, 202: 173-184.
|
11. |
Phanikrishna Venkata B, Chinara S. Automatic classification methods for detecting drowsiness using wavelet packet transform extracted time-domain features from single-channel EEG signal. Journal of Neuroscience Methods, 2020, 347: 108927.
|
12. |
Fan L A, Rui Y, Rma B, et al. End-to-end sleep staging using convolutional neural network in raw single-channel EEG. Biomedical Signal Processing and Control, 2021, 63: 102203-102210.
|
13. |
Supratak A, Dong H, Wu C, et al. DeepSleepNet: a model for automatic sleep stage scoring based on raw single-channel EEG. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(11): 1998-2008.
|
14. |
Huang Y, Zhang Y, Yan C. Automatic sleep staging based on deep neural network using single channel EEG∥International Conference on Knowledge Management in Organizations, Zamora: KMO, 2019: 63-73.
|
15. |
Seifpour S, Niknazar H, Mikaeili M, et al. A new automatic sleep staging system based on statistical behavior of local extrema using single channel EEG signal. Expert Systems with Application, 2018, 104: 277-293.
|
16. |
Jiang D, Lu Y N, Yu M, et al. Robust sleep stage classification with single-channel EEG signals using multimodal decomposition and HMM-based refinement. Expert Systems with Applications, 2019, 121: 188-203.
|
17. |
Hassan A R, Bhuiyan M. An automated method for sleep staging from EEG signals using normal inverse Gaussian parameters and adaptive boosting. Neurocomputing, 2016, 219(5): 76-87.
|
18. |
Wuzheng Xiaolei, Zuo Shigang, Yao Li, et al. Semi-supervised sparse representation classification for sleep EEG recognition with imbalanced sample sets. Journal of Mechanics in Medicine and Biology, 2021, 21(5): 2140006.
|
19. |
Kingma D, Ba J. Adam: a method for stochastic optimization. International Conference on Learning Representations, 2014, 12: 506-514.
|
20. |
Kemp B, Zwinderman A H, Tuk B, et al. Analysis of asleep-dependent neuronal feedback loop:the slow-wave microcontinuity of the EEG. IEEE Trans Biomed Eng, 2000, 47(9): 1185-1194.
|
21. |
Wolpert E A. A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Electroencephalography & Clinical Neurophysiology, 1969, 26(2): 644-644.
|
22. |
Chen X, He J, Wu X, et al. Sleep staging by bidirectional long short-term memory convolution neural network. Future Generation Computer Systems, 2020, 109(6): 188-196.
|
23. |
Phan H, Andreotti F, Cooray N, et a1. SeqSleepNet: end-to-end hierarchical recurrent neural network for sequence-to-sequence automatic sleep staging. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(3): 400-410.
|
24. |
Seo H, Back S, Lee S, et al. Intra-and inter-epoch temporal context network (IITNet) using sub-epoch features for automatic sleep scoring on raw single-channel EEG. Biomedical Signal Processing and Control, 2020, 61: 2037-2048.
|
25. |
Zhang J, Wu Y. Competition convolutional neural network for sleep stage classification. Biomedical Signal Processing and Control, 2021, 64: 102318-102327.
|
26. |
Eldele E, Chen Z, Liu C, et al. An attention-based deep learning approach for sleep stage classification with single-channel EEG. IEEE Trans Neural Syst Rehabil Eng, 2021, 29: 809-818.
|
27. |
Khalili E, Mohammadzadeh Asl B. Automatic sleep stage classification using temporal convolutional neural network and new data augmentation technique from raw single-channel EEG. Comput Methods Programs Biomed, 2021, 204: 106063.
|