1. |
Kiorpes L, Daw N. Cortical correlates of amblyopia. Visual Neurosci, 2018, 35: e016.
|
2. |
Wallace D K, Repka M X, Lee K A, et al. Amblyopia Preferred Practice Pattern®. Ophthalmology, 2018, 125(1): 105-142.
|
3. |
Kumaran S E, Khadka J, Baker R, et al. Functional limitations recognised by adults with amblyopia and strabismus in daily life: a qualitative exploration. Ophthal and Physl Opt, 2019, 39(3): 131-140.
|
4. |
Fu Zhujun, Hong Hao, Su Zhicai, et al. Global prevalence of amblyopia and disease burden projections through 2040: a systematic review and meta-analysis. Br J Ophthalmol, 2020, 104(8): 1164-1170.
|
5. |
Huang Dan, Chen Xuejuan, Zhu Hui, et al. Prevalence of amblyopia and its association with refraction in Chinese preschool children aged 36-48 months. Br J Ophthalmol, 2018, 102(6): 767-771.
|
6. |
Conner I P, Odom J V, Schwartz T L, et al. Monocular activation of V1 and V2 in amblyopic adults measured with functional magnetic resonance imaging. J AAPOS, 2007, 11(4): 341-350.
|
7. |
Tavor I, Parker J O, Mars R B, et al. Task-free MRI predicts individual differences in brain activity during task performance. Science, 2016, 352(6282): 216-220.
|
8. |
Yang Xubo, Lu Lu, Li Qian, et al. Altered spontaneous brain activity in patients with strabismic amblyopia: A resting-state fMRI study using regional homogeneity analysis. Exp Ther Med, 2019, 18(5): 3877-3884.
|
9. |
Zang Yufeng, He Yong, Zhu Chaozhe, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev, 2007, 29(2): 83-91.
|
10. |
Zhang Jianfeng, Liu Dongqiang, Qian Shufang, et al. The neural correlates of amplitude of low-frequency fluctuation: a multimodal resting-state MEG and fMRI-EEG study. Cereb Cortex, 2022. DOI: 10.1093/cercor/bhac124.
|
11. |
Dai Peishan, Zhang Jinlong, Wu Jing, et al. Altered spontaneous brain activity of children with unilateral amblyopia: A resting state fMRI study. Neural Plast, 2019, 2019: 1-10.
|
12. |
Tang Angcang, Chen Taolin, Zhang Junran, et al. Abnormal spontaneous brain activity in patients with anisometropic amblyopia using resting-state functional magnetic resonance imaging. J Pediat Ophth Strab, 2017, 54(5): 303-310.
|
13. |
Zou Qihong, Zhu Chaozhe, Yang Yihong, et al. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF. J Neurosci Meth, 2008, 172(1): 137-141.
|
14. |
Jia Xize, Sun Jiawei, Ji Gongjun, et al. Percent amplitude of fluctuation: A simple measure for resting-state fMRI signal at single voxel level. Plos One, 2020, 15(1): e227021.
|
15. |
Esteban O, Birman D, Schaer M, et al. MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites. Plos One, 2017, 12(9): e184661.
|
16. |
Gorgolewski K, Burns C D, Madison C, et al. Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python. Front Neuroinform, 2011, 5: 13.
|
17. |
Esteban O, Markiewicz C J, Blair R W, et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat Methods, 2019, 16(1): 111-116.
|
18. |
Jenkinson M, Beckmann C F, Behrens T E J, et al. FSL. NeuroImage, 2012, 62(2): 782-790.
|
19. |
Jia Xize, Wang Jue, Sun Haiyang, et al. RESTplus: an improved toolkit for resting-state functional magnetic resonance imaging data processing. Sci Bull, 2019, 64(14): 953-954.
|
20. |
Choi S, Jeong G, Kim Y, et al. Proposal for human visual pathway in the extrastriate cortex by fiber tracking method using diffusion-weighted MRI. NeuroImage, 2020, 220: 117145.
|
21. |
Rolls E T. The cingulate cortex and limbic systems for action, emotion, and memory. Handb Clin Neurol, 2019, 166: 23-37.
|
22. |
Ito S, Stuphorn V, Brown J W, et al. Performance monitoring by the anterior cingulate cortex during saccade countermanding. Science, 2003, 302(5642): 120-122.
|
23. |
Wu Kangrui, Yu Yajie, Tang Liying, et al. Altered brain network centrality in patients with adult strabismus with amblyopia: A resting-state functional magnetic resonance imaging (fMRI) study. Med Sci Monitor, 2020, 26: e925856.
|
24. |
Dai Peishan, Zhou Xiaoyan, Ou Yilin, et al. Altered effective connectivity of children and young adults with unilateral amblyopia: A resting-state functional magnetic resonance imaging study. Front Neurosci, 2021, 15: 657576.
|
25. |
Voogd J, Schraa-Tam C K L, van der Geest J N, et al. Visuomotor cerebellum in human and nonhuman primates. Cerebellum, 2012, 11(2): 392-410.
|
26. |
Alvarez T L, Scheiman M, Morales C, et al. Underlying neurological mechanisms associated with symptomatic convergence insufficiency. Sci Rep, 2021, 11(1): 6545.
|
27. |
James K H, Kersey A J. Dorsal stream function in the young child: an fMRI investigation of visually guided action. Dev Sci, 2018, 21(2): e12546.
|
28. |
Min Youlan, Su Ting, Shu Yongqiang, et al. Altered spontaneous brain activity patterns in strabismus with amblyopia patients using amplitude of low-frequency fluctuation: a resting-state fMRI study. Neuropsych Dis and Treat, 2018, 14: 2351-2359.
|
29. |
Lin Xiaoming, Ding Kun, Liu Yong, et al. Altered spontaneous activity in anisometropic amblyopia subjects: revealed by resting-state fMRI. Plos One, 2012, 8(7): e433738.
|
30. |
Ding Kun, Liu Yong, Yan Xiaohe, et al. Altered functional connectivity of the primary visual cortex in subjects with amblyopia. Neural Plast, 2013, 2013: 1-8.
|
31. |
Niechwiej-Szwedo E, Colpa L, Wong A M F. Visuomotor behaviour in amblyopia: Deficits and compensatory adaptations. Neural Plast, 2019, 2019: 1-18.
|
32. |
Gonzalez E G, Wong A M, Niechwiej-Szwedo E, et al. Eye position stability in amblyopia and in normal binocular vision. Vis Sci, 2012, 53(9): 5386-5394.
|
33. |
Niechwiej-Szwedo E, Goltz H C, Colpa L, et al. Effects of reduced acuity and stereo acuity on saccades and reaching movements in adults with amblyopia and strabismus. Invest Ophth Vis Sci, 2017, 58(2): 914-921.
|
34. |
Vedamurthy I, Knill D C, Huang S J, et al. Recovering stereo vision by squashing virtual bugs in a virtual reality environment. Philos T R Soc B, 2016, 371(1697): 20150264.
|
35. |
Kim H R, Angelaki D E, DeAngelis G C. Gain modulation as a mechanism for coding depth from motion parallax in macaque area MT. J Neurosci, 2017, 37(34): 8180-8197.
|
36. |
Treue S, Maunsell J H R. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature, 1996, 382(6591): 539-541.
|
37. |
Uka T, DeAngelis G C. Linking neural representation to function in stereoscopic depth perception: Roles of the middle temporal area in coarse versus fine disparity discrimination. J Neurosci, 2006, 26(25): 6791-6802.
|
38. |
周朋. 基于静息态功能磁共振成像的弱视患者脑功能研究. 北京: 中国科学院大学, 2016.
|
39. |
Parker A J, Smith J E, Krug K. Neural architectures for stereo vision. Philos Trans R Soc Lond B Biol Sci, 2016, 371(1697): 20150261.
|
40. |
Welchman A E, Deubelius A, Conrad V, et al. 3D shape perception from combined depth cues in human visual cortex. Nat Neurosci, 2005, 8(6): 820-827.
|
41. |
Cottereau B R, Ales J M, Norcia A M. The evolution of a disparity decision in human visual cortex. NeuroImage, 2014, 92: 193-206.
|
42. |
Uji M, Lingnau A, Cavin I, et al. Identifying cortical substrates underlying the phenomenology of stereopsis and realness: A pilot fMRI study. Front Neurosci, 2019, 13: 646.
|
43. |
Kim H R, Angelaki D E, DeAngelis G C. The neural basis of depth perception from motion parallax. Philos Trans R Soc Lond B Biol Sci, 2016, 371(1697): 20150256.
|
44. |
Newsome W T, DeAngelis G C, Cumming B G. Cortical area MT and the perception of stereoscopic depth. Nature, 1998, 394(6694): 677-680.
|
45. |
Wang F, Yang W, Zhang L, et al. Brain activation difference evoked by different binocular disparities of stereograms: An fMRI study. Phys Medica, 2016, 32(10): 1308-1313.
|
46. |
Chen Nihong, Chen Zhimin, Fang Fang. Functional specialization in human dorsal pathway for stereoscopic depth processing. Exp Brain Res, 2020, 238(11): 2581-2588.
|
47. |
Tailor V K, Schwarzkopf D S, Dahlmann-Noor A H. Neuroplasticity and amblyopia: vision at the balance point. Curr Opin Neurol, 2017, 30(1): 74-83.
|
48. |
Ferreri F, Rossini P M. TMS and TMS-EEG techniques in the study of the excitability, connectivity, and plasticity of the human motor cortex. Rev Neurosci, 2013, 24(4): 431-442.
|
49. |
Lou A R, Madsen K H, Paulson O B, et al. Monocular visual deprivation suppresses excitability in adult human visual cortex. Cereb Cortex, 2011, 21(12): 2876-2882.
|
50. |
Tuna A R, Pinto N, Brardo F M, et al. Transcranial magnetic stimulation in adults with amblyopia. J Neuroophthalmol, 2020, 40(2): 185-192.
|
51. |
Donkor R, Silva A E, Teske C, et al. Repetitive visual cortex transcranial random noise stimulation in adults with amblyopia. Sci Rep, 2021, 11(1): 3029.
|
52. |
Erkelens I M, Bobier W R, Macmillan A C, et al. A differential role for the posterior cerebellum in the adaptive control of convergence eye movements. Brain Stimul, 2020, 13(1): 215-228.
|
53. |
Colnaghi S, Colagiorgio P, Ramat S, et al. After effects of cerebellar continuous theta burst stimulation on reflexive saccades and smooth pursuit in humans. Cerebellum, 2017, 16(4): 764-771.
|