1. |
中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2021概要. 心脑血管病防治, 2022, 22(4): 20-36, 40.
|
2. |
Engin M. ECG beat classification using neuro-fuzzy network. Pattern Recogn Lett, 2004, 25(15): 1715-1722.
|
3. |
Lv S Q, Wang Z P, Na J Y. Arrhythmia classification of merged features method based on SENet and BiLSTM// 2021 4th International Conference on Information Communication and Signal Processing (ICICSP). Paris: ICICSP, 2021: 162-167.
|
4. |
Latif G, Anezi F Y A, Zikria M, et al. EEG-ECG signals classification for arrhythmia detection using decision trees// 2020 4th International Conference on Inventive Systems and Control (ICISC). Coimbatore: IEEE, 8: 192-196.
|
5. |
Kung B H, Hu P Y, Huang C C, et al. An efficient ECG classification system using resource-saving architecture and random forest. IEEE J Biomed Health, 2021, 25(6): 1904-1914.
|
6. |
Khatibi T, Rabinezhadsadatmahaleh N. Proposing feature engineering method based on deep learning and KNNs for ECG beat classification and arrhythmia detection. Phys Eng Sci Med, 2020, 43(1): 49-68.
|
7. |
Yogesh D, Vedavathi D, Hiremath D S G. Implementation of five classes of automated ECG arrhythmia classification using KNN classifier. Int J Creat Res Thoughts, 2021, 9(2): 635-640.
|
8. |
Liang W, Zhang Y L, Tan J D, et al. A novel approach to ECG classification based upon two-layered HMMs in body sensor networks. Sensors (basel), 2014, 14(4): 5994-6011.
|
9. |
唐建军, 李兴秀, 华晶, 等. 基于神经网络的心电图检测分类综述. 计算机应用与软件, 2021, 38(5): 1-9, 41.
|
10. |
Goodfellow I J, Bengio Y, Courville A C. Deep learning. Nature, 2015, 521: 436-444.
|
11. |
Xia Y F, Xie Y Q. A novel wearable electrocardiogram classification system using convolutional neural networks and active learning. IEEE Access, 2019, 7: 7989-8001.
|
12. |
Kiranyaz S, Ince T, Gabbouj M. Real-time patient-specific ECG classification by 1-d convolutional neural networks. IEEE T Biomed Eng, 2016, 63: 664-675.
|
13. |
Obeidat Y M, Alqudah A M. A hybrid lightweight 1d CNN-LSTM architecture for automated ECG beat-wise classification. Trait Signal, 2021, 38: 1281-1291.
|
14. |
骆俊锦, 王万良, 王铮, 等. 基于时序二维化和卷积特征融合的表面肌电信号分类方法. 模式识别与人工智能, 2020, 33(7): 588-599.
|
15. |
Baspinar U, Şenyurek V Y, Doğan B, et al. A comparative study of denoising sEMG signals. Turk J Electr Eng Co, 2015, 23: 931-944.
|
16. |
Sharma A, Singh P K, Chandra R. SMOTified-GAN for class imbalanced pattern classification problems. IEEE Access, 2022, 10: 30655-30665.
|
17. |
Huang J S, Chen B G, Yao B, et al. ECG arrhythmia classification using STFT-based spectrogram and convolutional neural network. IEEE Access, 2019, 7: 92871-92880.
|
18. |
Wang T, Lu C H, Sun Y N, et al. Automatic ECG classification using continuous wavelet transform and convolutional neural network. Entropy, 2021, 23(1): 119.
|
19. |
Zyout A, Alquran H, Mustafa W A, et al. Advanced time-frequency methods for ECG waves recognition. Diagnostics, 2023, 13(2): 308.
|
20. |
Moody G B, Mark R G. The impact of the MIT-BIH arrhythmia database. IEEE Eng Med Biol, 2001, 20: 45-50.
|
21. |
Bajaj A, Kumar S. A robust approach to denoise ECG signals based on fractional stockwell transform. Biomed Signal Proces, 2020, 62: 102090.
|
22. |
Dragomiretskiy K, Zosso D. Variational mode decomposition. IEEE T Signal Proces, 2014, 62: 531-544.
|
23. |
Kapfo A, Dandapat S, Bora P K. Automated detection of myocardial infarction from ECG signal using variational mode decomposition based analysis. Healthcare Technol Lett, 2020, 7: 155-160.
|
24. |
Wang Y, Bai D Y. Application of wavelet threshold method based on optimized VMD to ECG denoising// 2021 IEEE 3rd International Conference on Frontiers Technology of Information and Computer (ICFTIC). Qingdao: ICFTIC, 2021: 741-744.
|
25. |
Chawla N, Bowyer K, Hall L O, et al. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res, 2002, 16: 321-357.
|
26. |
Shukla J, Panigrahi B K, Ray P K. Power quality disturbances classification based on gramian angular summation field method and convolutional neural networks. Int T Electr Energy, 2021, 31(12): e13222.1-e13222.16.
|
27. |
Woo S, Park J, Lee J, et al. CBAM: convolutional block attention module// European Conference on Computer Vision (ECCV). Munich: ECCV, 2018: 3-19.
|
28. |
Niu C M, Nan F Z, Wang X R. A super resolution frontal face generation model based on 3DDFA and CBAM. Displays, 2021, 69: 102043.
|
29. |
Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning. Comput Sci, 2017: 11231.
|
30. |
Sun L, Wang Y L, Qu Z G, et al. BeatClass: a sustainable ECG classification system in IoT-based eHealth. IEEE Internet Things, 2022, 9: 7178-7195.
|
31. |
Wang H R, Shi H T, Chen X J, et al. An improved convolutional neural network based approach for automated heartbeat classification. J Med Syst, 2019, 44(2): 35.
|
32. |
Sellami A, Hwang H. A robust deep convolutional neural network with batch-weighted loss for heartbeat classification. Expert Syst Appl, 2019, 122: 75-84.
|
33. |
Huang H F, Liu J, Zhu Q, et al. A new hierarchical method for inter-patient heartbeat classification using random projections and RR Intervals. Biomed Eng Online, 2014, 13: 90.
|
34. |
Garcia G, Moreira G J P, Menotti D, et al. Inter-patient ECG heartbeat classification with temporal VCG optimized by PSO. Sci Rep-UK, 2017, 7(1): 10543.
|