1. |
胡盛寿. 中国心血管健康与疾病报告2021概要. 中国循环杂志, 2022, 37(6): 553-578.
|
2. |
Wang J S,Chiang W C,Hsu Y L,et al. ECG arrhythmia classification using a probabilistic neural network with a feature reduction method. Neurocomputing, 2013, 116(10): 38-45.
|
3. |
Li T Y,Zhou M. ECG classification using wavelet packet entropy and random forests. Entropy, 2016, 18(8): 285-294.
|
4. |
Pandey S K,Janghel R R,Vani V. Patient specific machine learning models for ECG signal classification. Procedia Computer Science, 2020, 167: 2181-2190.
|
5. |
Sellami A,Hwang H. A robust deep convolutional neural network with batch weighted loss for heartbeat classification. Expert Syst Appl, 2019, 122: 75-84.
|
6. |
Chen C,Hua Z,Zhang R,et al. Automated arrhythmia classification based on a combination network of CNN and LSTM. Biomed Signal Proces Control, 2020, 57: 101819.
|
7. |
Gao Yibo,Wang Huan,Liu Zuhao. A novel approach for atrial fibrillation signal identification based on temporal attention mechanism// 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society(EMBC). IEEE,2020: 316-319.
|
8. |
Yao G,Mao X,Li N,et al. Interpretation of electrocardiogram heartbeat by CNN and GRU. Comput Math Method Med, 2021, 2021: 6534942.
|
9. |
Zhou S R,Tan B. Electrocardiogram soft computing using hybrid deep learning CNN-ELM. Appl Soft Comput, 2019, 86: 105778.
|
10. |
Li Z,Zhou D,Wan L,et al. Heartbeat classification using deep residual convolutional neural network from 2-lead electrocardiogram. J Electrocardiol, 2020, 58: 105-112.
|
11. |
Zhou Z, Zhai X, Tin C. Fully automatic electrocardiogram classification system based on generative adversarial network with auxiliary classifier. Expert Syst Appl, 2021, 174: 114809.
|
12. |
Che C, Zhang P, Zhu M, et al. Constrained transformer network for ECG signal processing and arrhythmia classification. BMC Med Inform Decis Mak, 2021, 21(1): 184.
|
13. |
Vaswani A,Shazeer N,Parmar N,et al. Attention is all you need//31st Conference on Neural Information Processing Systems, New York: Curran Associates, 2017, 55: 5998-6008.
|
14. |
Wang H,Shi H,Lin K,et al. A high-precision arrhythmia classification method based on dual fully connected neural network. Biomed Signal Process Control, 2020, 58: 101874.
|
15. |
Kumar A,Tomar H,Mehla V K,et al. Stationary wavelet transform based ECG signal denoising method. ISA Trans, 2021, 114: 251-262.
|
16. |
Han G,Lin B,Xu Z. Electrocardiogram signal denoising based on empirical mode decomposition technique: an overview. J Instrum, 2017, 12(3): 3010-3029.
|
17. |
Singh P, Pradhan G. Variational mode decomposition based ECG denoising using non-local means and wavelet domain filtering. Australas Phys Eng Sci Med, 2018, 41(4): 891-904.
|
18. |
Moody G B,Mark R G. The impact of the MIT-BIH arrhythmia database. IEEE Eng Med Biol Mag, 2001, 20(3): 45-50.
|
19. |
Hulse J V, Khoshgoftaar T M, Napolitano A. An empirical evaluation of repetitive undersampling techniques. Int J Softw Eng Knowl Eng, 2012, 20(2): 173-195.
|
20. |
Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 2002: 321-357.
|
21. |
He Haibo, Bai Yang, Garcia E A, et al. ADASYN: adaptive synthetic sampling approach for imbalanced learning//2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), HongKong: IEEE, 2008: 1322-1328.
|
22. |
Oksuz K, Cam B C, Kalkan S, et al. Imbalance problems in object detection: a review. IEEE Trans Pattern Anal Mach Intell, 2021, 43(10): 3388-3415.
|
23. |
Jhang Y S, Wang S T, Sheu M H, et al. Integration design of portable ECG signal acquisition with deep-learning based electrode motion artifact removal on an embedded system. IEEE Access, 2022, 10: 57555-57564.
|