1. |
贾秀鹏, 张东生, 郑杰, 等. 用于肿瘤热疗的锰锌铁氧体纳米粒子的制备及表征. 生物医学工程学杂志, 2006, 23(6): 1263-1266.
|
2. |
Gavilán H, Avugadda S K, Fernández-Cabada T, et al. Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chem Soc Rev, 2021, 50(20): 11614-11668.
|
3. |
Fernandes N, Rodrigues C F, Moreira A F, et al. Overview of the application of inorganic nanomaterials in cancer photothermal therapy. Bio Sci, 2020, 8(11): 2990-3020.
|
4. |
Liu B, Li C X, Chen G Y, et al. Synthesis and optimization of MoS2@Fe3O4-ICG/Pt(IV) nanoflowers for MR/IR/PA bioimaging and combined PTT/PDT/chemotherapy triggered by 808 nm laser. Adv Sci, 2017, 4(8): 1600540-1600552.
|
5. |
Chu M Q, Shao Y X, Peng J L, et al. Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles. Biomaterials, 2013, 34(16): 4078-4088.
|
6. |
Zhang T, Chai H, Meng F, et al. DNA-functionalized porous Fe3O4 nanoparticles for the construction of self-powered miRNA biosensor with target recycling amplification. ACS Appl Mater, 2018, 10(43): 36796-36804.
|
7. |
Kim J, Cho H R, Jeon H, et al. Continuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer. J Am Chem Soc, 2017, 139(32): 10992-10995.
|
8. |
Wang G S, Ma Y Y, Wei Z Y, et al. Development of multifunctional cobalt ferrite/graphene oxide nanocomposites for magnetic resonance imaging and controlled drug delivery. Chem Eng J, 2016, 289(1): 150-160.
|
9. |
Yin S Y, Song G S, Yang Y, et al. Persistent regulation of tumor microenvironment via circulating catalysis of MnFe2O4@Metal-Organic frameworks for enhanced photodynamic therapy. Adv Funct, 2019, 29(25): 1901417-1901427.
|
10. |
Shadie H, Zahra M B, Mohammad M A, et al. Hyperthermia of breast cancer tumor using graphene oxide-cobalt ferrite magnetic nanoparticles in mice. J Drug Deliv Sci Technol, 2021, 65: 102680-102692.
|
11. |
Stefanie K, Melek K, Luis P, et al. Enhanced in vitro biocompatibility and water dispersibility of magnetite and cobalt ferrite nanoparticles employed as ROS formation enhancer in radiation cancer therapy. Small, 2018, 14(21): e1704111.
|
12. |
Wang Y J, Zou L Q, Qiang Z, et al. Enhancing targeted cancer treatment by combining hyperthermia and radiotherapy using Mn-Zn ferrite magnetic nanoparticles. ACS Biomater Sci Eng, 2020, 6(6): 3550-3562.
|
13. |
Yang C Y, Chen Y D, Guo W, et al. Bismuth ferrite-based nanoplatform design: An ablation mechanism study of solid tumor and NIR-triggered photothermal/photodynamic combination cancer therapy. Adv Funct, 2018, 28(18): 1706827.
|
14. |
Yang Z W, Yao J T, Wang J X, et al. Ferrite-encapsulated nanoparticles with stable photothermal performance for multimodal imaging-guided atherosclerotic plaque neovascularization therapy. Biomater Sci, 2021, 9: 5652-5664.
|
15. |
Li W T, Li B Y, Wu B, et al. Free-radical cascade generated by AIPH/Fe3O4-coloaded nanoparticles enhances MRI-guided chemo/thermodynamic hypoxic tumor therapy. ACS Appl Mater Interfaces, 2022, 14(26): 29563-29576.
|
16. |
Alberto C, Amanda K A, Sonia C, et al. Iron oxide nanoflowers@CuS hybrids for cancer tri-therapy: Interplay of photothermal therapy, magnetic hyperthermia and photodynamic therapy. Theranostics, 2019, 9(5): 1288-1302.
|
17. |
Guan Q Q, Guo R M, Huang S H, et al. Mesoporous polydopamine carrying sorafenib and SPIO nanoparticles for MRI-guided ferroptosis cancer therapy. J Control Release, 2020, 320: 392-403.
|
18. |
Deng Z F, Qiao G L, Ma L J, et al. Photosensitizer-functionalized Mn@Co magnetic nanoparticles for MRI/NIR-mediated photothermal therapy of gastric cancer. ACS Appl Nano Mater, 2021, 4: 13523-13533.
|
19. |
Chang T, Hou Y J, Wang F Z, et al. Novel N-TiO2/SiO2/Fe3O4 nanocomposite as a photosensitizer with magnetism and visible light responsiveness for photodynamic inactivation of HeLa cells in vitro. Ceram Int, 2019, 45(10): 13393-13400.
|
20. |
Abdelhamid H N, Wu H F. Proteomics analysis of the mode of antibacterial action of nanoparticles and their interactions with proteins. Trends Analyt Chem, 2015, 65: 30-46.
|
21. |
Ahdoot M, Wilbur A R, Reese S E, et al. MRI-targeted, systematic, and combined biopsy for prostate cancer diagnosis. N Engl J Med, 2020, 382(10): 917-928.
|
22. |
Ali R, Aziz M H, Gao S, et al. Graphene oxide/zinc ferrite nanocomposite loaded with doxorubicin as a potential theranostic mediu in cancer therapy and magnetic resonance imaging. Ceram Int, 2022, 48(8): 10741-10750.
|
23. |
Xie J, Yan C Y, Yan Y, et al. Multi-modal Mn-Zn ferrite nanocrystals for magnetically-induced cancer targeted hyperthermia: a comparison of passive and active targeting effects. Nanoscale, 2016, 8(38): 16902-16915.
|
24. |
Pellico J, Ruiz-Cabello J, Saiz-Alía M, et al. Fast synthesis and bioconjugation of 68Ga core-doped extremely small iron oxide nanoparticles for PET/MR imaging. Contrast Media Mol I, 2016, 11(3): 203-210.
|
25. |
Mou J, Lin T Q, Huang F Q, et al. Black titania-based theranostic nanoplatform for single NIR laser induced dual-modal imaging-guided PTT/PDT. Biomaterial, 2016, 84: 13-24.
|
26. |
Zhang L X, Chen S, Ma R, et al. NIR-excitable PEG-modified Au nanorods for photothermal therapy of cervical cancer. ACS Appl Nano Mater, 2021, 4: 13060-13070.
|
27. |
Putra G E, Huang L, Hsu Y C. Effective combined photodynamic therapy with lipid platinum chloride nanoparticles therapies of oral squamous carcinoma tumor inhibition. J Clin Med, 2019, 12(8): 2112-2120.
|
28. |
Kuo S H, Wu P T, Huang J Y, et al. Fabrication of anisotropic Cu ferrite-polymer core-shell nanoparticles for photodynamic ablation of cervical cancer cells. Nanomaterials, 2020, 10(12): 2429-2438.
|
29. |
Maqusood A, Mohd J, Hisham A, et al. Copper ferrite nanoparticle-induced cytotoxicity and oxidative stress in human breast cancer MCF-7 cells. Colloids Surf, 2016, 142: 46-54.
|
30. |
Wang Y F, Meng H M, Song G F, et al. Conjugated-polymer-based nanomaterials for photothermal therapy. ACS Appl Poly Mater, 2020, 2(10): 4258-4272.
|
31. |
Yu C C, Xu L J, Zhang Y Y, et al. Polymer-based nanomaterials for noninvasive cancer photothermal therapy. ACS Appl Poly Mater, 2020, 2(10): 4289-4305.
|
32. |
Zhou B Q, Wu Q, Wang M, et al. Immunologically modified MnFe2O4 nanoparticles to synergize photothermal therapy and immunotherapy for cancer treatment. Chem Eng J, 2020, 396: 125239.
|
33. |
Das P, Colombo M, Prosperi D. Recent advances in magnetic fluid hyperthermia for cancer therapy. Colloids Surf B Biointerfaces, 2019, 174: 42-55.
|
34. |
Deatsch A E, Evans B A. Heating efficiency in magnetic nanoparticle hyperthermia. J Magn Magn Mater, 2014, 354: 163-172.
|
35. |
Zhang Y F, Li G L, Gao X, et al. Method for ferrite nanomaterials-mediated cellular magnetic hyperthermia. ACS Biomater Sci Eng, 2020, 6(12): 6652-6660.
|
36. |
Pan J, Xu Y Y, Wu Q S, et al. Mild magnetic hyperthermia-activated innate immunity for liver cancer therapy. J Am Chem Soc, 2021, 143(21): 8116-8128.
|
37. |
Zhong L, Li Y S, Xiong L, et al. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Ther, 2021, 6(1): 201.
|
38. |
Qi H Z, Liu C Y, Long L X, et al. Blood exosomes endowed with magnetic and targeting properties for cancer therapy. ACS Nano, 2016, 10(3): 3323-3333.
|
39. |
Bar-Zeev M, Livney Y D, Assaraf Y G. Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance. Drug Resist Updat, 2017, 31: 15-30.
|
40. |
Xu H L, Yang J J, ZhuGe D L, et al. Glioma-targeted delivery of a theranostic liposome integrated with quantum dots, superparamagnetic iron oxide, and cilengitide for dual-imaging guiding cancer surgery. Adv Health Mater, 2018, 7(9): e1701130.
|
41. |
Shen L Z, Li B, Qiao Y S. Fe3O4 nanoparticles in targeted drug/gene delivery systems. Materials, 2018, 11(2): 324-336.
|
42. |
Xie L, Jiang Q, He Y, et al. Insight into the efficient transfection activity of a designed low aggregated magnetic polyethyleneimine/DNA complex in serum-containing medium and the application in vivo. Biomater Sci, 2015, 3(3): 446-456.
|
43. |
Stephen Z R, Dayringer C J, Lim J J. et al. An approach to rapid synthesis and functionalization of iron oxide nanoparticles for high gene transfection. ACS Appl Mater Interfaces, 2016, 8(10): 6320-6328.
|
44. |
Cai J, Yi P W, Miao Y Q, et al. Ultrasmall T1-T2 magnetic resonance multimodal imaging nanoprobes for the detection of beta-amyloid aggregates in Alzheimer’s disease mice. ACS Appl Mater Interfaces, 2020, 12(24): 26812-26821.
|
45. |
Cesur S, Cam M E, Sayin F S. et al. Electrically controlled drug release of donepezil and BiFeO3 magnetic nanoparticle-loaded PVA microbubbles/nanoparticles for the treatment of Alzheimer’s disease. J Drug Deliv Sci Tec, 2022, 67: 102977.
|