1. |
Salah A, Li Y, Wang H, et al. Macrophages as a double-edged weapon: The use of macrophages in cancer immunotherapy and understanding the cross-talk between macrophages and cancer. DNA Cell Biol, 2021, 40: 429-440.
|
2. |
de Groot A E, Pienta K J. Epigenetic control of macrophage polarization: implications for targeting tumor-associated macrophages. Oncotarget, 2018, 9(29): 20908-20927.
|
3. |
金萧萧, 王彩莲. 氧化铁纳米颗粒在恶性肿瘤诊疗中的应用及进展. 现代肿瘤医学, 2017, 25(17): 2852-2855.
|
4. |
Yuan H S, Wilks M Q, El Fakhri G, et al. Heat-induced-radiolabeling and click chemistry: A powerful combination for generating multifunctional nanomaterials. PLoS One, 2017, 12(2): e0172722.
|
5. |
Kaittanis C, Bolaender A, Yoo B, et al. Targetable clinical nanoparticles for precision cancer therapy based on disease-specific molecular inflection points. Nano Lett, 2017, 17: 7160-7168.
|
6. |
李康, 郭强, 王翠妮, 等. M1和M2型巨噬细胞表型的比较分析. 现代免疫学, 2008, 28(3): 177-183.
|
7. |
Funes S C, Rios M, Escobar-Vera J, et al. Implications of macrophage polarization in autoimmunity. Immunol, 2018, 154(2): 186-195.
|
8. |
Galvan-Pena S, O’Neill L A. Metabolic reprograming in macrophage polarization. Front in Immunol, 2014, 5: 420.
|
9. |
Bowdish D. Macrophage activation and polarization. Encycl Immunobiol, 2016, 1: 289-292.
|
10. |
赵清杰, 朱琳楠, 丁文军, 等. 巨噬细胞极化与细胞代谢的相互调控. 细胞与分子免疫学杂志, 2015, 31(3): 408-411.
|
11. |
柳笑彦, 刘力. 代谢及炎症反应相关的巨噬细胞极化调控的研究进展. 转化医学电子杂志, 2018, 5(10): 92-96.
|
12. |
Orliaguet L, Dalmas E, Drareni K, et al. Mechanisms of macrophage polarization in insulin signaling and sensitivity. Front in Endocrinol, 2020, 11: 62.
|
13. |
Irey E A, Lassiter C M, Brady N J, et al. JAK/STAT inhibition in macrophages promotes therapeutic resistance by inducing expression of protumorigenic factors. Proc Natl Acad Sci, 2019, 116: 12442-12451.
|
14. |
Xin P, Xu X, Deng C, et al. The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int Immunopharmacol, 2020, 80: 1-11.
|
15. |
Zhang T, Ma C, Zhang Z, et al. NF-κB signaling in inflammation and cancer. MedComm (2020), 2021, 2(4): 618-653.
|
16. |
Savitsky D, Tamura T, Yanai H, et al. Regulation of immunity and oncogenesis by the IRF transcription factor family. Cancer Immunol Immunother, 2010, 59(4): 489-510.
|
17. |
Bouhlel M A, Derudas B, Rigamonti E, et al. PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory propertie. Cell Metab, 2007, 6(2): 137-143.
|
18. |
Shu Y, Qin M, Song Y, et al. M2 polarization of tumor-associated macrophages is dependent on integrin β3 via peroxisome proliferator-activated receptor-γ up-regulation in breast cancer. Immunology, 2020, 160(4): 345-356.
|
19. |
Li C, Xu M M, Wang K, et al. Macrophage polarization and meta-inflammation. Transl Res, 2018, 191: 29-44.
|
20. |
Saha B, Bala S, Hosseini N, et al. Krüppel-like factor 4 is a transcriptional regulator of M1/M2 macrophage polarization in alcoholic liver disease. J Leukoc Biol, 2015, 97(5): 963-973.
|
21. |
Mohajerani A, Burnett L, Smith J V, et al. Nanoparticles in construction materials and other applications, and implications of nanoparticle use. Materials (Basel), 2019, 12(19): 3052.
|
22. |
Chaturvedi V, Singh A, Singh V, et al. Cancer nanotechnology: A new revolution for cancer diagnosis and therapy. Current Drug Metabol, 2019, 20(6): 416-429.
|
23. |
朴美玉, 赵经文. 磁性氧化铁纳米粒子在生物医学应用中的研究进展. 淮海医药, 2020, 38(4): 436-439.
|
24. |
Colombo M, Carregal-Romero S, Casula M F, et al. Biological applications of magnetic nanoparticles. Chem Soc Rev, 2012, 41(11): 4306-4334.
|
25. |
Kiessling F, Mertens M E, Grimm J, et al. Nanoparticles for imaging: Top or Flop? Radiol, 2014, 273: 10-28.
|
26. |
Merinopoulos I, Gunawardena T, Stirrat C, et al. Diagnostic applications of ultrasmall superparamagnetic particles of iron oxide for imaging myocardial and vascular inflammation. JACC Card Imag, 2021, 14(6): 1249-1264.
|
27. |
Dulińska-Litewka J, Łazarczyk A, Hałubiec P, et al. Superparamagnetic iron oxide nanoparticles-current and prospective medical applications. Materials (Basel), 2019, 12(4): 617.
|
28. |
Kono Y, Gogatsubo S, Ohba T, et al. Enhanced macrophage delivery to the colon using magnetic lipoplexes with a magnetic field. Drug Deliv, 2019, 26(1): 935-943.
|
29. |
Kang M K, Kim T J, Kim Y J, et al. Targeted delivery of iron oxide nanoparticle-loaded human embryonic stem cell-derived spherical neural masses for treating intracerebral hemorrhage. Int J Mol Sci, 2020, 21(10): 3658.
|
30. |
Mertz D, Sandre O, Begin-Colin S. Drug releasing nanoplatforms activated by alternating magnetic fields. Biochim Biophys Acta, 2017, 1861: 1617-1641.
|
31. |
Thiesen B, Jordan A. Clinical applications of magnetic nanoparticles for hyperthermia. Int J Hyperthermia, 2008, 24: 467-474.
|
32. |
Kumar C S S R, Mohammad F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev, 2011, 63: 789-808.
|
33. |
Golovin Y I, Gribanovsky S L, Golovin D Y, et al. Towards nanomedicines of the future: Remote magneto-mechanical actuation of nanomedicines by alternating magnetic fields. J Control Release, 2015, 219: 43-60.
|
34. |
Laskar A, Eilertsen J, Li W, et al. SPION primes THP1 derived M2 macrophages towards M1-like macrophages. Biochem Biophys Res Commun, 2013, 441(4): 737-742.
|
35. |
Liao Z X, Ou D L, Hsieh M J, et al. Synergistic effect of repolarization of M2 to M1 macrophages induced by iron oxide nanoparticles combined with lactate oxidase. Int J Mol Sci, 2021, 22(24): 13346.
|
36. |
付倩梅, 唐华明, 张鹏, 等. 偶联 CD206 抗体载 Fe3O4 的 PLGA 纳米微球促进巨噬细胞 M1 型极化. 南方医科大学学报, 2020, 40(2): 246-254.
|
37. |
Li C X, Zhang Y, Dong X, et al. Artificially reprogrammed macrophages as tumor-tropic immunosuppression-resistant biologics to realize therapeutics production and immune activation. Adv Mater, 2019, 31(15): e1807211.
|
38. |
Zhang W, Cao S, Liang S, et al. Differently charged super-paramagnetic iron oxide nanoparticles preferentially induced M1-like phenotype of macrophages. Front Bioeng Biot, 2020, 8: 537.
|
39. |
齐奥, 付宜鸣, 倪少滨. 氧化铁纳米颗粒通过诱导巨噬细胞释放活性氧抑制膀胱癌的研究. 中国免疫学杂志, 2019, 35(12): 1473-1475, 1481.
|
40. |
DeNardo D G, Ruffell B. Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol, 2019, 19(6): 369-382.
|
41. |
Sukhbaatar N, Weichhart T. Iron regulation: macrophages in control. Pharmaceuticals, 2018, 11(4): 137.
|
42. |
Nascimento C S, Alves É A R, Melo C P, et al. Immunotherapy for cancer: effects of iron oxide nanoparticles on polarization of tumor-associated macrophages. Nanomed (Lond), 2021, 16: 2633-2650.
|
43. |
Guo W, Wu X, Wei W, et al. Mesoporous hollow Fe3O4 nanoparticles regulate the behavior of neuro-associated cells through induction of macrophage polarization in an alternating magnetic field. J Mater Chem B, 2022, 10(29): 5633-5643.
|
44. |
Nwasike C, Yoo E, Purr E, et al. Activatable superparamagnetic iron oxide nanoparticles scavenge reactive oxygen species in macrophages and endothelial cells. RSC Adv, 2020, 10(68): 41305-41314.
|
45. |
Lei H, Pan Y, Wu R, et al. Innate immune regulation under magnetic fields with possible mechanisms and therapeutic applications. Front Immunol, 2020, 11: 1-10.
|
46. |
Lee J H, Ju J E, Kim B I, et al. Rod-shaped iron oxide nanoparticles are more toxic than sphere-shaped nanoparticles to murine macrophage cells. Environ Toxicol Chem, 2014, 33(12): 2759-2766.
|
47. |
Chen S, Chen S, Zeng Y, et al. Size-dependent superparamagnetic iron oxide nanoparticles dictate interleukin-1β release from mouse bone marrow-derived macrophages. J Appl Toxicol, 2018, 38(7): 978-986.
|
48. |
Feng Q, Liu Y, Huang J, et al. Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci Rep, 2018, 8(1): 1-13.
|