1. |
Tan S, Khumalo N, Bayat A. Understanding keloid pathobiology from a quasi-neoplastic perspective: less of a scar and more of a chronic inflammatory disease with cancer-like tendencies. Front Immunol, 2019, 10: 1810.
|
2. |
Ogawa R. Keloid and hypertrophic scars are the result of chronic inflammation in the reticular dermis. Int J Mol Sci, 2017, 18(3): 606.
|
3. |
Jfri A, O'Brien E, Alavi A, et al. Association of hidradenitis suppurativa and keloid formation: a therapeutic challenge. JAAD Case Rep, 2019, 5(8): 675-678.
|
4. |
Alhady S M, Sivanantharajah K. Keloids in various races. a review of 175 cases. Plast Reconstr Surg, 1969, 44(6): 564-566.
|
5. |
Lee H J, Jang Y J. Recent understandings of biology, prophylaxis and treatment strategies for hypertrophic scars and keloids. Int J Mol Sci, 2018, 19(3): 711.
|
6. |
Ekstein S F, Wyles S P, Moran S L, et al. Keloids: a review of therapeutic management. Int J Dermatol, 2021, 60(6): 661-671.
|
7. |
Wong T W, Lee J Y. Should excised keloid scars be sent for routine histologic analysis?. Ann Plas Surg, 2008, 60(6): 724.
|
8. |
Alexandrescu D, Fabi S, Yeh L C, et al. Comparative results in treatment of keloids with intralesional 5-FU/kenalog, 5-FU/verapamil, enalapril alone, verapamil alone, and laser: a case report and review of the literature. J Drugs Dermatol, 2016, 15(11): 1442-1447.
|
9. |
Park S Y. Nomogram: an analogue tool to deliver digital knowledge. J Thorac Cardiovasc Surg, 2018, 155(4): 1793.
|
10. |
南力宾, 李茹, 霍红沙, 等. 基于多参数建立前列腺癌列线图预测模型及验证的研究. 大连医科大学学报, 2021, 43(2): 139-145.
|
11. |
付佳, 田甜. 糖尿病患者术中皮肤压力性损伤风险列线图预测模型的构建. 中国医科大学学报, 2021, 50(11): 1014-1019, 1025.
|
12. |
Zhao Z, He S, Yu X, et al. Analysis and experimental validation of rheumatoid arthritis innate immunity gene CYFIP2 and pan-cancer. Front Immunol, 2022, 13: 954848.
|
13. |
武杰, 李岚, 张惠博, 等. 结肠癌淋巴结转移的风险基因及列线图预测模型的构建. 肿瘤防治研究, 2020, 47(12): 947-952.
|
14. |
周嫱, 柏娜, 刘生刚, 等. 基于生物信息学和机器学习方法探索缺血性脑卒中关键风险基因. 中国神经精神疾病杂志, 2022, 48(9): 525-532.
|
15. |
王玉潇, 姜威, 刘治, 等. 基于共空间模式算法和支持向量机二重分类的癫痫发病预测. 生物医学工程学杂志, 2021, 38(1): 39-46.
|
16. |
高智勇, 龚健雅, 秦前清, 等. 支持向量机在早期癌症检测中的应用. 生物医学工程学杂志, 2005, 22(5): 1045-1048.
|
17. |
程丽珍, 郭起浩, 李蔚, 等. 基于WGCNA分析和SVM建模对轻度认知功能障碍患者血液基因生物标志物的筛选研究. 重庆医科大学学报, 2021, 46(11): 1334-1341.
|
18. |
Bi S, Liu R, Wu B, et al. Bioinformatic analysis of key genes and pathways related to keloids. Biomed Res Int, 2021, 2021: 5897907.
|
19. |
Li X, Jiang R, Jin H, et al. Identification of hub genes of keloid fibroblasts by coexpression network analysis and degree algorithm. J Healthc Eng, 2022, 2022: 1272338.
|
20. |
Yin X, Bu W, Fang F, et al. Keloid biomarkers and their correlation with immune infiltration. Front Genet, 2022, 13: 784073.
|
21. |
Matsumoto N M, Aoki M, Okubo Y, et al. Gene expression profile of isolated dermal vascular endothelial cells in keloids. Front Cell Dev Biol, 2020, 8: 658.
|
22. |
Kang Y, Roh M R, Rajadurai S, et al. Hypoxia and HIF-1α regulate collagen production in keloids. J Invest Dermatol, 2020, 140(11): 2157-2165.
|
23. |
Ritchie M E, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res, 2015, 43(7): e47.
|
24. |
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 2008, 9: 559.
|
25. |
Szklarczyk D, Gable A L, Nastou K C, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res, 2021, 49(D1): D605-D612.
|
26. |
Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003, 13(11): 2498-2504.
|
27. |
Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw, 2010, 33(1): 1-22.
|
28. |
Van Essen D C. Cortical cartography and caret software. NeuroImage, 2012, 62(2): 757-764.
|
29. |
Fuentes-Duculan J, Bonifacio K M, Suárez-Fariñas M, et al. Aberrant connective tissue differentiation towards cartilage and bone underlies human keloids in African Americans. Exp Dermatol, 2017, 26(8): 721-727.
|
30. |
Hahn J M, Glaser K, Mcfarland K L, et al. Keloid-derived keratinocytes exhibit an abnormal gene expression profile consistent with a distinct causal role in keloid pathology. Wound Repair Regen, 2013, 21(4): 530-544.
|
31. |
Ninou I, Magkrioti C, Aidinis V. Autotaxin in pathophysiology and pulmonary fibrosis. Front Med(Lausanne). 2018, 5: 180.
|
32. |
Sah J P, Hao N T T, Han X, et al. Ectonucleotide pyrophosphatase 2 (ENPP2) plays a crucial role in myogenic differentiation through the regulation by WNT/β-Catenin signaling. Int J Biochem Cell Biol, 2020, 118: 105661.
|
33. |
Ohtsubo K, Marth J D. Glycosylation in cellular mechanisms of health and disease. Cell, 2006, 126(5): 855-867.
|
34. |
Wynn T A. Cellular and molecular mechanisms of fibrosis. J Pathol, 2008, 214(2): 199-210.
|
35. |
Lee W J, Park S E, Rah D K. Effects of hepatocyte growth factor on collagen synthesis and matrix metalloproteinase production in keloids. J Korean Med Sci, 2011, 26(8): 1081-1086.
|
36. |
Jeon Y R, Ahn H M, Choi I K, et al. Hepatocyte growth factor-expressing adenovirus upregulates matrix metalloproteinase-1 expression in keloid fibroblasts. Int J Dermatol, 2016, 55(3): 356-361.
|
37. |
Guasch R M, Scambler P, Jones G E, et al. RhoE regulates actin cytoskeleton organization and cell migration. Mol Cell Biol, 1998, 18(8): 4761-4771.
|
38. |
Zhou J, Li K, Gu Y, et al. Transcriptional up-regulation of RhoE by hypoxia-inducible factor (HIF)-1 promotes epithelial to mesenchymal transition of gastric cancer cells during hypoxia. Biochem Biophys Res Commun, 2011, 415(2): 348-354.
|
39. |
Jiang C, Huang H, Liu J, et al. Fasudil, a Rho-kinase inhibitor, attenuates bleomycin-induced pulmonary fibrosis in mice. Int J Mol Sci. 2012,13(7): 8293-8307.
|
40. |
Keller-Pinter A, Gyulai-Nagy S, Becsky D, et al. Syndecan-4 in tumor cell motility. Cancers (Basel), 2021, 13(13): 3322.
|
41. |
Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta, 2014, 1840(8): 2506-2519.
|
42. |
Massagué, J. G1 cell-cycle control and cancer. Nature, 2004, 432(7015): 298–306.
|
43. |
Jumper N, Paus R, Bayat A. Functional histopathology of keloid disease. Histol Histopathol. 2015, 30(9): 1033-1057.
|
44. |
Jiao H, Fan J, Cai J, et al. Analysis of characteristics similar to autoimmune disease in keloid patients. Aesthetic Plast Surg. 2015, 39(5): 818-825.
|
45. |
Lu Y Y, Tu H P, Wu C H, et al. Risk of cancer development in patients with keloids. Sci Rep, 2021, 11(1): 9390.
|
46. |
Lu W S, Zheng X D, Yao X H, et al. Clinical and epidemiological analysis of keloids in Chinese patients. Arch Dermatol Res. 2015, 307(2): 109-114.
|
47. |
Marneros A G, Norris J E, Watanabe S, et al. Genome scans provide evidence for keloid susceptibility loci on chromosomes 2q23 and 7p11. J Invest Dermatol. 2004, 122(5): 1126-1132.
|
48. |
Butler P D, Longaker M T, Yang G P. Current progress in keloid research and treatment. J Am Coll Surg, 2008, 206(4): 731-741.
|
49. |
Chen Y, Gao J H, Liu X J, et al. Characteristics of occurrence for Han Chinese familial keloids. Burns, 2006, 32(8): 1052-1059.
|