1. |
刘子龙, 陈鹏. 基于变尺度融合网络模型的心电数据识别算法. 生物医学工程学杂志, 2022, 39(3): 570-578.
|
2. |
Le M D, Rathour V S, Truong Q S, et al. Multi-module recurrent convolutional neural network with transformer encoder for ECG arrhythmia classification// 2021 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI). Athens: IEEE, 2021: 1-5.
|
3. |
吴燃, 唐清垚, 姜小明, 等. 心电成分的多核尺度卷积神经网络分类算法研究. 重庆邮电大学学报, 2022, 34(2): 243-249.
|
4. |
许诗雨, 莫思特, 闫惠君, 等. 基于焦点损失函数的嵌套长短时记忆网络心电信号分类研究. 生物医学工程学杂志, 2022, 39(2): 301-310.
|
5. |
杨淑莹, 桂彬彬, 陈胜勇. 基于小波分解和1D-GoogLeNet的心律失常检测. 电子与信息学报, 2021, 43(10): 3018-3027.
|
6. |
彭向东, 潘从成, 柯泽浚, 等. 基于并行架构和时空注意力机制的心电分类方法. 浙江大学学报, 2022, 56(10): 1912-1923.
|
7. |
Jun T J, Nguyen H M, Kang D, et al. ECG arrhythmia classification using a 2-D convolutional neural network. arXiv, 2018: 1804.06812.
|
8. |
Huang J, Chen B, Yao B, et al. ECG arrhythmia classification using STFT-based spectrogram and convolutional neural network. IEEE Access, 2019, 7: 92871-92880.
|
9. |
Ullah A, Anwar S M, Bilal M, et al. Classification of arrhythmia by using deep learning with 2-D ECG spectral image representation. Remote Sensing, 2020, 12(10): 1685.
|
10. |
李鸿强, 吴非凡, 曹路, 等. 基于改进深度残差网络的心电信号分类算法. 天津工业大学学报, 2022, 41(5): 65-72.
|
11. |
刘晋瑞, 宋婷, 舒智林, 等. 一种面向运动解码的EEG-fNIRS时频特征融合与协同分类方法. 仪器仪表学报, 2022, 43(7): 165-173.
|
12. |
Ahmad Z, Tabassum A, Guan L, et al. ECG heartbeat classification using multimodal fusion. IEEE Access, 2021, 9: 100615-100626.
|
13. |
Shukla N, Pandey A, Shukla A P, et al. ECG-ViT: A transformer-based ECG classifier for energy-constraint wearable devices. J Sensors, 2022, 2022: 1-9.
|
14. |
Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv, 2010: 2010.11929.
|
15. |
Wu H, Xiao B, Codella N, et al. Cvt: Introducing convolutions to vision transformers// Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 22-31.
|
16. |
Moody G B, Mark R G. The impact of the MIT-BIH arrhythmia database. IEEE Eng Med Biol, 2001, 20(3): 45-50.
|
17. |
Bousseljot R, Kreiseler D, Schnabel A. Nutzung der EKG-Signaldatenbank CARDIODAT der PTB über das Internet. Biomedizinische Technik/Biomedical Engineering, 1995, 40(s1): 317-318.
|
18. |
Kachuee M, Fazeli S, Sarrafzadeh M. ECG heartbeat classification: A deep transferable representation// International Conference on Healthcare Informatics (ICHI). New York: IEEE, 2018: 443-444.
|
19. |
古莹奎, 吴宽, 李成. 基于格拉姆角场和迁移深度残差神经网络的滚动轴承故障诊断. 振动与冲击, 2022, 41(21): 228-237.
|
20. |
张二华, 单德山, 李乔. 基于多尺度递归图理论的桥梁微弱信号非线性非平稳检验. 振动与冲击, 2019, 38(16): 123-128.
|
21. |
何浩祥, 王玮, 黄磊. 基于卷积神经网络和递归图的桥梁损伤智能识别. 应用基础与工程科学学报, 2020, 28(4): 966-980.
|
22. |
柯丽, 王丹妮, 杜强, 等. 基于卷积长短时记忆网络的心律失常分类方法. 电子与信息学报, 2020, 42(8): 1990-1998.
|
23. |
Acharya U R, Fujita H, Oh S L, et al. Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Inform Sciences, 2017, 415: 190-198.
|
24. |
Li W, Tang Y M, Yu K M, et al. SLC-GAN: An automated myocardial infarction detection model based on generative adversarial networks and convolutional neural networks with single-lead electrocardiogram synthesis. Inform Sciences, 2022, 589: 738-750.
|