1. |
Minaee S, Boykov Y, Porikli F, et al. Image segmentation using deep learning: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(7): 3523-3542..
|
2. |
Khan A, Sohail A, Zahoora U, et al. A survey of the recent architectures of deep convolutional neural networks. Artificial Intelligence Review, 2020, 53: 5455-5516..
|
3. |
Ulku I, Akagündüz E. A survey on deep learning-based architectures for semantic segmentation on 2D images. Applied Artificial Intelligence, 2022, 36(1): 2032924..
|
4. |
Li Z, Wu X, Wang J, et al. Weather-degraded image semantic segmentation with multi-task knowledge distillation. Image and Vision Computing, 2022, 127: 104554..
|
5. |
Xia H, Ma M, Li H, et al. MC-net: multi-scale context-attention network for medical CT image segmentation. Applied Intelligence, 2022, 52(2): 1508-1519..
|
6. |
Ding Z, Wang T, Sun Q, et al. Adaptive fusion with multi-scale features for interactive image segmentation. Applied Intelligence, 2021, 51(8): 5610-5621..
|
7. |
Chen W, Chen X, Lin Y. Homogeneous ensemble extreme learning machine autoencoder with mutual representation learning and manifold regularization for medical datasets. Applied Intelligence, 2023, 53(12): 15476-15495..
|
8. |
Zhang Y, Wei Y, Wu Q, et al. Collaborative unsupervised domain adaptation for medical image diagnosis. IEEE Transactions on Image Processing, 2020, 29: 7834-7844..
|
9. |
Batzner S, Musaelian A, Sun L, et al. E (3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nature Communications, 2022, 13(1): 2453..
|
10. |
Chlap P, Min H, Vandenberg N, et al. A review of medical image data augmentation techniques for deep learning applications. Journal of Medical Imaging and Radiation Oncology, 2021, 65(5): 545-563..
|
11. |
Sirazitdinov I, Kholiavchenko M, Kuleev R, et al. Data augmentation for chest pathologies classification//2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). IEEE, 2019: 1216-1219..
|
12. |
Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation//Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Springer International Publishing, 2015: 234-241..
|
13. |
Zhou Z, Siddiquee M M R, Tajbakhsh N, et al. Unet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Transactions on Medical Imaging, 2019, 39(6): 1856-1867..
|
14. |
Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2017: 2881-2890..
|
15. |
Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation//Proceedings of the European Conference on Computer Vision (ECCV), Lecture Notes in Computer Science, 2018, 11211: 833-851..
|
16. |
Guo M H, Xu T X, Liu J J, et al. Attention mechanisms in computer vision: a survey. Computational Visual Media, 2022, 8(3): 331-368..
|
17. |
Lee H J, Kim H E, Nam H. SRM: a style-based recalibration module for convolutional neural networks//Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea: IEEE, 2019: 1854-1862..
|
18. |
Hu J, Shen L, Sun G. Squeeze-and-excitation networks//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City: IEEE, 2018: 7132-7141..
|
19. |
Hosseinzadeh Taher M R, Haghighi F, Feng R, et al. A systematic benchmarking analysis of transfer learning for medical image analysis//Domain Adaptation and Representation Transfer, and Affordable Healthcare and AI for Resource Diverse Global Health (2021), Strasbourg, France, Springer International Publishing, 2021, 12968: 3-13..
|
20. |
Kolesnikov A, Beyer L, Zhai X, et al. Big transfer (BiT): general visual representation learning//Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, Springer International Publishing, 2020: 491-507..
|
21. |
Kowsher M, Sami A A, Prottasha N J, et al. Bangla-BERT: transformer-based efficient model for transfer learning and language understanding. IEEE Access, 2022, 10: 91855-91870..
|
22. |
Wu X, Chen C, Zhong M, et al. COVID-AL: The diagnosis of COVID-19 with deep active learning. Medical Image Analysis, 2021, 68: 101913..
|
23. |
Yang L, Zhang Y, Chen J, et al. Suggestive annotation: a deep active learning framework for biomedical image segmentation//Medical Image Computing and Computer Assisted Intervention− MICCAI 2017: 20th International Conference, Quebec City, Canada, Springer International Publishing, 2017: 399-407..
|
24. |
Wu X, Chen C, Zhong M, et al. HAL: hybrid active learning for efficient labeling in medical domain. Neurocomputing, 2021, 456: 563-572..
|
25. |
Moshkovitz M, Yang Y Y, Chaudhuri K. Connecting interpretability and robustness in decision trees through separation. arXiv Preprint, 2021, arXiv: 2102.07048..
|
26. |
Stiglic G, Kocbek P, Fijacko N, et al. Interpretability of machine learning-based prediction models in healthcare. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2020, 10(5): e1379..
|
27. |
Zhou B, Khosla A, Lapedriza A, et al. Learning deep features for discriminative localization//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas: IEEE, 2016: 2921-2929..
|
28. |
Selvaraju R R, Cogswell M, Das A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization//2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy: IEEE, 2017: 618-626..
|
29. |
Borgli H, Thambawita V, Smedsrud P H, et al. HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy. Scientific Data, 2020, 7(1): 283..
|
30. |
Oren T, Gal A. ISIC-Archive-Downloader. (2020-07-25) [2023-05-23]. https: //github.com/GalAvineri/ISIC-Archive-Downloader..
|