1. |
Chalouhi N, Hoh B L, Hasan D. Review of cerebral aneurysm formation, growth, and rupture. Stroke, 2013, 44(12): 3613-3622.
|
2. |
Alwalid O, Long X, Xie M, et al. Artificial intelligence applications in intracranial aneurysm: Achievements, challenges and opportunities. Acad Radiol, 2022, 29(Suppl 3): S201-S214.
|
3. |
Heit J J, Honce J M, Yedavalli V S, et al. RAPID Aneurysm: Artificial intelligence for unruptured cerebral aneurysm detection on CT angiography. J Stroke Cerebrovasc Dis, 2022, 31(10): 106690.
|
4. |
Kapsas G, Budai C, Toni F, et al. Evaluation of CTA, time-resolved 4D CE-MRA and DSA in the follow-up of an intracranial aneurysm treated with a flow diverter stent: Experience from a single case. Interv Neuroradiol, 2015, 21(1): 69-71.
|
5. |
Chao Z, Xu W. A new general maximum intensity projection technology via the hybrid of U-Net and radial basis function neural network. J Digit Imaging, 2021, 34(5): 1264-1278.
|
6. |
Oguro S, Mugikura S, Ota H, et al. Usefulness of maximum intensity projection images of non-enhanced CT for detection of hyperdense middle cerebral artery sign in acute thromboembolic ischemic stroke. Jpn J Radiol, 2022, 40(10): 1046-1052.
|
7. |
Zellweger C, Berger N, Wieler J, et al. Breast computed tomography diagnostic performance of the maximum intensity projection reformations as a stand-alone method for the detection and characterization of breast findings. Invest Radiol, 2022, 57(4): 205-211.
|
8. |
Amyar A, Modzelewski R, Vera P, et al. Weakly supervised tumor detection in PET using class response for treatment outcome prediction. J Imaging, 2022, 8(5): 130.
|
9. |
Naila Jabeen, Ruby Qureshi, Amjad Sattar, et al. Diagnostic accuracy of maximum intensity projection in diagnosis of malignant pulmonary nodules. Cureus, 2019, 11(11): e6120.
|
10. |
Rahmany I, Laajili S, Khlifa N. Automated computerized method for the detection of unruptured cerebral aneurysms in DSA images. Curr Med Imaging, 2018, 14(5): 771-777.
|
11. |
Uchiyama Y, Ando H, Yokoyama R, et al. Computer-aided diagnosis scheme for detection of unruptured intracranial aneurysms in MR angiography. Conf Proc IEEE Eng Med Biol Soc, 2005, 3: 3031-3034.
|
12. |
Hentschke C M, Beuing O, Paukisch H, et al. A system to detect cerebral aneurysms in multimodality angiographic data sets. Med Phys, 2014, 41(9): 11.
|
13. |
Mensah E, Pringle C, Roberts G, et al. Deep learning in the management of intracranial aneurysms and cerebrovascular diseases: A review of the current literature. World Neurosurg, 2022, 161: 39-45.
|
14. |
Chen G, Wei X, Lei H, et al. Automated computer-assisted detection system for cerebral aneurysms in time-of-flight magnetic resonance angiography using fully convolutional network. Biomed Eng Online, 2020, 19(1): 38.
|
15. |
Park A, Chute C, Rajpurkar P, et al. Deep learning–assisted diagnosis of cerebral aneurysms using the HeadXNet model. JAMA Network Open, 2019, 2(6): e195600.
|
16. |
Chen X, Lei Y, Su J B, et al. A review of artificial intelligence in cerebrovascular disease imaging: Applications and challenges. Curr Neuropharmacol, 2022, 20(7): 1359-1382.
|
17. |
Nakao T, Hanaoka S, Nomura Y, et al. Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography. J Magn Reson Imaging, 2018, 47(4): 948-953.
|
18. |
Hou W G, Mei S J, Gui Q L, et al. 1D CNN-based intracranial aneurysms detection in 3D TOF-MRA. Complexity, 2020, 2020: 7023754.
|
19. |
Stember J N, Chang P, Stember D M, et al. Convolutional neural networks for the detection and measurement of cerebral aneurysms on magnetic resonance angiography. J Digit Imaging, 2019, 32(5): 808-815.
|
20. |
Lou A, Guan S, Loew M. CaraNet: Context axial reverse attention network for segmentation. arXiv, 2021, 2021: 2103.12212.
|
21. |
罗守华, 刘俊秀, 于洁, 等. 最大密度投影算法实现与改进. 北京生物医学工程, 2009, 28(2): 131-134.
|
22. |
Ho J, Kalchbrenner N, Weissenborn D, et al. Axial attention in multidimensional transformers. arXiv: 2019, 2019: 1912.12180.
|
23. |
Chen S, Tan X, Wang B, et al. Reverse attention for salient object detection. arXiv, 2018, 2018: 1807.09940.
|
24. |
Qin X, Zhang Z, Huang C, et al. BASNet: Boundary-Aware Salient object detection// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019: 7479-7489.
|
25. |
Wei J, Wang S, Huang Q. F3Net: Fusion, feedback and focus for salient object detection. arXiv, 2020, 2020: 1911.11445.
|
26. |
Hu Jie, Shen Li, Albanie S, et al. Squeeze-and-Excitation metworks. IEEE Trans Pattern Anal Mach Intell, 2020, 42(8): 2011-2023.
|
27. |
Nair V, Hinton G E. Rectified linear units improve restricted Boltzmann Machines// The 27th International Conference on International Conference on Machine Learning. Haifa: ACM, 2010: 807-814.
|