1. |
Sung H, Ferlay J, Siegel R L, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
|
2. |
Lei S, Zheng R, Zhang S, et al. Breast cancer incidence and mortality in women in China: temporal trends and projections to 2030. Cancer Biol Med, 2021, 18(3): 900-909.
|
3. |
Shi Z, Lin J, Wu Y, et al. Burden of cancer and changing cancer spectrum among older adults in China: Trends and projections to 2030. Cancer Epidemiol, 2022, 76: 102068.
|
4. |
Zeng H, Chen W, Zheng R, et al. Changing cancer survival in China during 2003-15: a pooled analysis of 17 population-based cancer registries. Lancet Glob Health, 2018, 6(5): e555-e567.
|
5. |
Hildebrandt M G, Naghavi-Behzad M, Vogsen M. A role of FDG-PET/CT for response evaluation in metastatic breast cancer?. Semin Nucl Med, 2022, 52(5): 520-530.
|
6. |
Chen W. Clinical application of PET in pediatric brain tumors. PET Clin, 2008, 3(4): 517-529.
|
7. |
辛阳. CT成像技术的发展及技术特点. 科技创新导报, 2018, 15(4): 132-133.
|
8. |
Li Y, Dai Y, Guo Y, et al. Correlation analysis of sup18/sup F-FDG PET/CT for the staging and treatment effect assessment of breast cancer. Journal of X-Ray Science and Technology, 2019, 27(6): 1131-1144.
|
9. |
Cruz-Roa A, Arevalo J, Judkins A, et al. A method for medulloblastoma tumor differentiation based on convolutional neural networks and transfer learning//International Symposium on Medical Information Processing and Analysis. International Society for Optics and Photonics, 2015, DOI: 10.1117/12.2208825.
|
10. |
赵旭. 基于医学先验的多尺度乳腺超声肿瘤实例分割方法. 哈尔滨: 哈尔滨工业大学, 2019.
|
11. |
徐胜舟, 程时宇. 基于全卷积神经网络迁移学习的乳腺肿块图像分割. 中南民族大学学报: 自然科学版, 2019, 38(2): 278-284.
|
12. |
Al-Antari M A, Al-Masni M A, Choi M T, et al. A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification. Int J Med Inform, 2018, 117: 44-54.
|
13. |
Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation//International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2015: 234–241.
|
14. |
Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation//European Conference on Computer Vision. Springer, Cham, 2018: 833-851.
|
15. |
Zhuang J. LadderNet: multi-path networks based on U-Net for medical image segmentation. arXiv preprint, 2018, DOI: 10.48550/arXiv.1810.07810.
|
16. |
Kumar A, Fulham M, Feng D, et al. Co-learning feature fusion maps from PET-CT images of lung cancer. IEEE Trans Med Imaging, 2019, 39(1): 204-217.
|
17. |
Xiao X, Lian S, Luo Z, et al. Weighted Res-UNet for high-quality retina vessel segmentation//2018 9th International Conference on Information Technology in Medicine and Education (ITME). IEEE Computer Society, 2018: 327-331.
|
18. |
Guan S, Khan A A, Sikdar S, et al. Fully dense UNet for 2-D sparse photoacoustic tomography artifact removal. IEEE J Biomed Health Inform, 2020, 24(2): 568-576.
|
19. |
Isensee F, Jäger P F, Kohl S A A, et al. Automated design of deep learning methods for biomedical image segmentation. arXiv preprint, 2019, arXiv: 1904.08128.
|
20. |
Chen J, Lu Y, Yu Q, et al. TransUNet: Transformers make strong encoders for medical image segmentation. arXiv preprint, 2021, DOI: 10.48550/arXiv.2102.04306.
|
21. |
Jain J, Li J, Chiu M T, et al. OneFormer: one transformer to rule universal image segmentation. arXiv preprint, 2022, DOI: 10.48550/arXiv.2211.06220.
|
22. |
Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16×16 words: Transformers for image recognition at scale. arXiv preprint, 2020, DOI: 10.48550/arXiv.2010.11929.
|
23. |
Xie E, Wang W, Yu Z, et al. SegFormer: simple and efficient design for semantic segmentation with transformers. arXiv preprint, 2021, DOI: 10.48550/arXiv.2105.15203.
|
24. |
Liu Z, Lin Y, Cao Y, et al. Swin Transformer: hierarchical vision Transformer using shifted windows. arXiv preprint, 2021. DOI: 10.48550/arXiv.2103.14030.
|
25. |
Ji S, Yang M, Yu K. 3D convolutional neural networks for human action recognition. IEEE Trans Pattern Anal Mach Intell, 2013, 35(1): 221-231.
|
26. |
Vaswani A, Shazeer N, Parmar N, et al. Attention Is All You Need. arXiv preprint, 2017. DOI: 10.48550/arXiv.1706.03762.
|
27. |
余辉, 张书旭. 4DCT图像二维配准与三维配准的区别. 医疗装备, 2011, 24(7): 6-8.
|
28. |
胡德文, 陈广学, 朱剑铭, 等. 基于ROI的医学图像预处理技术研究. 医学影像学杂志, 2018, 28(4): 585-589.
|
29. |
Fukuda T, Fernandez R, Rosenberg A, et al. Data augmentation improves recognition of foreign accented speech. Interspeech, 2018, 18(9): 2409-2413.
|
30. |
侯向丹, 李紫宇, 牛敬钰, 等. 结合注意力机制和多路径U-Net的视网膜血管分割. 计算机辅助设计与图形学学报, 2023, 35(1): 55-65.
|