1. |
Hou H R, Zhang X N, Meng Q H. Odor-induced emotion recognition based on average frequency band division of EEG signals. J Neurosci Meth, 2020, 334: 108599.
|
2. |
Xing M, Hu S, Wei B, et al. Spatial-frequency-temporal convolutional recurrent network for olfactory-enhanced EEG emotion recognition. J Neurosci Meth, 2022, 376: 109624.
|
3. |
柳素红, 孙晓, 李春彬. 基于位置信息重建与时频域信息融合的脑电信号情感识别. 计算机工程, 2021, 47(12): 95-102.
|
4. |
Gao Y, Wang X, Potter T, et al. Single-trial EEG emotion recognition using Granger Causality/Transfer Entropy analysis. J Neurosci Meth, 2020, 346: 108904.
|
5. |
冯茜, 李擎, 全威, 等. 多目标粒子群优化算法研究综述. 工程科学学报, 2021, 43(6): 745-753.
|
6. |
杨晓敏. 改进灰狼算法优化支持向量机的网络流量预测. 电子测量与仪器学报, 2021, 35(3): 211-217.
|
7. |
García-Martínez B, Martínez-Rodrigo A, Alcaraz R, et al. Nonlinear methodologies applied to automatic recognition of emotions: an EEG review// Ochoa S, Singh P, Bravo J. Proceedings of Ubiquitous Computing and Ambient Intelligence: 11th International Conference, UCAmI 2017. Cham: Springer International Publishing, 2017, 10586: 754-765.
|
8. |
Shan X, Yang E H, Zhou J, et al. Neural-signal electroencephalogram (EEG) methods to improve human-building interaction under different indoor air quality. Energ Buildings, 2019, 197: 188-195.
|
9. |
Somol P, Pudil P, Kittler J. Fast branch & bound algorithms for optimal feature selection. IEEE Trans Pattern Anal Mach Intell, 2004, 26(7): 900-912.
|
10. |
Ahmed M A, Deyu Q, Alshemmary E N. Electroencephalogram signal eye blink rejection improvement based on the hybrid stone blind origin separation and particle swarm optimization technique. IEEE Access, 2020, 8: 105671-105680.
|
11. |
Ghorbanzadeh G, Nabizadeh Z, Karimi N, et al. DGAFF: Deep genetic algorithm fitness Formation for EEG Bio-Signal channel selection. Biomed Signal Proces, 2023, 79: 104119.
|
12. |
Liu K, Dong W, Dong H, et al. A complex fault diagnostic approach of active distribution network based on SBS-SFS optimized multi-SVM. Math Probl Eng, 2020, 2020: 525-542.
|
13. |
Martínez-Tejada L A, Puertas-González A, Yoshimura N, et al. Exploring EEG characteristics to identify emotional reactions under videogame scenarios. Brain Sci, 2021, 11(3): 378.
|
14. |
Song T, Zheng W, Liu S, et al. Graph-embedded convolutional neural network for image-based EEG emotion recognition. IEEE T Emerg Top Com, 2021, 10(3): 1399-1413.
|
15. |
Sarma P, Barma S. Emotion recognition by distinguishing appropriate EEG segments based on random matrix theory. Biomed Signal Proces, 2021, 70: 102991.
|
16. |
Atkinson J, Campos D. Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers. Expert Syst Appl, 2016, 47: 35-41.
|
17. |
Liu H, Zhang Y, Li Y, et al. Review on emotion recognition based on electroencephalography. Front Comput Neurosc, 2021, 15: 84.
|
18. |
Eid M M, Alassery F, Ibrahim A, et al. Metaheuristic optimization algorithm for signals classification of electroencephalography channels. Comput Mater Con, 2022, 71(3): 4627-4641.
|
19. |
Lv Z, Zhang J, Epota Oma E. A novel method of emotion recognition from multi-band EEG topology maps based on ERENet. Sn Appl Sci, 2022, 12(20): 10273.
|
20. |
Li Y, Zheng W. EEG processing in emotion recognition: inspired from a musical staff. MultimedTools Appl, 2023, 82(3): 4161-4180.
|
21. |
Mohammed H M, Umar S U, Rashid T A. A systematic and meta-analysis survey of whale optimization algorithm. Comput Intel Neurosc, 2019, 2019: 2-14.
|
22. |
Tong W. A hybrid algorithm framework with learning and complementary fusion features for whale optimization algorithm. Sci Programming, 2020, 2020: 1-25.
|
23. |
Liang X, Xu S, Liu Y, et al. A modified whale optimization algorithm and its application in seismic inversion problem. Mob Inf Syst, 2022, 2022: 1-18.
|
24. |
Kushwah R, Kaushik M, Chugh K. A modified whale optimization algorithm to overcome delayed convergence in artificial neural networks. Soft Comput, 2021, 25(15): 10275-10286.
|
25. |
Li Y, Han T, Zhao H, et al. An adaptive whale optimization algorithm using Gaussian distribution strategies and its application in heterogeneous UCAVs task allocation. IEEE Access, 2019, 7: 110138-110158.
|
26. |
Yıldırım H, Özkale M R. An enhanced extreme learning machine based on Liu regression. Neural Process Lett, 2020, 52: 421-442.
|
27. |
Zhang G, Cui D, Mao S, et al. Unsupervised feature learning with sparse Bayesian auto-encoding based extreme learning machine. Int J Mach Learn Cyb, 2020, 11(7): 1557-1569.
|
28. |
Liu T, Fan Q, Kang Q, et al. Extreme learning machine based on firefly adaptive flower pollination algorithm optimization. Processes, 2020, 8(12): 1583.
|
29. |
Wang Z M, Hu S Y, Song H. Channel selection method for EEG emotion recognition using normalized mutual information. IEEE Access, 2019, 7: 143303-143311.
|
30. |
Fang Y, Yang H, Zhang X, et al. Multi-feature input deep forest for EEG-based emotion recognition. Front Neurorobot, 2021, 14: 617531.
|
31. |
Chen D, Miao R, Deng Z, et al. Sparse granger causality analysis model based on sensors correlation for emotion recognition classification in electroencephalography. Front Comput Neurosci, 2021, 15: 684373.
|
32. |
Qiao W, Wang Y, Zhang J, et al. An innovative coupled model in view of wavelet transform for predicting short-term PM10 concentration. J Environ Manage, 2021, 289: 112438.
|
33. |
Zheng W L, Lu B L. Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks. IEEE T Auton Ment De, 2015, 7(3): 162-175.
|
34. |
Wang Z, Tong Y, Heng X. Phase-locking value based graph convolutional neural networks for emotion recognition. IEEE Access, 2019, 7: 93711-93722.
|
35. |
Li J, Pan W, Huang H, et al. STGATE: Spatial-temporal graph attention network with a transformer encoder for EEG-based emotion recognition. Front Hum Neurosci, 2023, 17: 1169949.
|
36. |
Gao Z, Wang X, Yang Y, et al. A channel-fused dense convolutional network for EEG-based emotion recognition. IEEE T Cogn Dev Syst, 2020, 13(4): 945-954.
|