1. |
叶健安, 田翔, 王普, 等. 基于多分支一维卷积神经网络电阻抗断层成像数据后处理方法研究. 空军军医大学学报, 2022, 43(7): 842-846,851.
|
2. |
田翠杰, 王海播, 张文平, 等. 电阻抗断层成像技术在呼吸系统疾病中的临床应用. 中国呼吸与危重监护杂志, 2020, 19(6): 617-620.
|
3. |
Barber D C. A review of image reconstruction techniques for electrical impedance tomography. Med Phys, 1989, 16(2): 162-169.
|
4. |
Widodo A, Endarko. Experimental study of one step linear Gauss-Newton algorithm for improving the quality of image reconstruction in high-speed electrical impedance tomography. J Phys Conf Ser, 2018, 1120: 012067.
|
5. |
Vauhkonen M, Karjalainen P A, Kaipio J P. A Kalman filter approach to track fast impedance changes in electrical impedance tomography. IEEE Trans Biomed Eng, 1998, 45(4): 486-493.
|
6. |
Wang H, Yang Y Y, Pan Y, et al. Detecting thoracic diseases via representation learning with adaptive sampling. Neurocomputing, 2020, 406: 354-360.
|
7. |
Wang Y, Yu B, Wang L, et al. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose. Neuroimage, 2018, 174: 550-562.
|
8. |
Chen Y, Yang X H, Wei Z, et al. Generative adversarial networks in medical image augmentation: a review. Comput Biol Med, 2022, 144: 105382.
|
9. |
Faruqui N, Yousuf M A, Whaiduzzaman M, et al. LungNet: a hybrid deep-CNN model for lung cancer diagnosis using CT and wearable sensor-based medical IoT data. Comput Biol Med, 2021, 139: 104961.
|
10. |
Chan H P, Hadjiiski L M, Samala R K. Computer-aided diagnosis in the era of deep learning. Med Phys, 2020, 47(5): e218-e227.
|
11. |
Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets// Proceedings of the 27th International Conference on Neural Information Processing Systems (NIPS’14), Montreal: NIPS, 2014, 2: 2672-2680.
|
12. |
李佳.电阻抗层析成像的数据融合与正则化算法研究. 天津: 天津大学, 2020.
|
13. |
Liu D, Smyl D, Du J. Nonstationary shape estimation in electrical impedance tomography using a parametric level set-based extended Kalman filter approach. IEEE Transactions on Instrumentation and Measurement, 2019, 69(5): 1894-1907.
|
14. |
Kim K Y, Kim B, Kim M C, et al. Image reconstruction in time-varying electrical impedance tomography based on the extended Kalman filter. Measurement Science and Technology, 2001, 12(8): 1032.
|
15. |
Zhang J, Zhang L, Liu Z, et al. Tikhonov regularization-based extended Kalman filter technique for robust and accurate reconstruction in diffuse optical tomography. J Opt Soc Am A Opt Image Sci Vis, 2023, 40(1): 10-20.
|
16. |
Qiu Y, Zhao H. Ocean acoustic tomography with moving node based on Tikhonov regularized Kalman filter. Journal of Physics: Conference Series, 2019, 1169(1): 012027.
|
17. |
Carmi A, Gurfil P, Kanevsky D. Methods for sparse signal recovery using Kalman filtering with embedded pseudo-measurement norms and quasi-norms. IEEE Transactions on Signal Processing, 2010, 58(4): 2405-2409.
|
18. |
Li X, Zhang R, Wang Q, et al. SAR-CGAN: improved generative adversarial network for EIT reconstruction of lung diseases. Biomedical Signal Processing and Control, 2023, 81: 104421.
|
19. |
Garehdaghi F, Meshgini S, Afrouzian R. Positron emission tomography image enhancement using magnetic resonance images and U-net structure. Computers & Electrical Engineering, 2021, 90: 106973.
|
20. |
Isola P, Zhu J Y, Zhou T, et al. Image-to-image translation with conditional adversarial networks//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1125-1134.
|
21. |
Liao F, Liang M, Li Z, et al. Evaluate the malignancy of pulmonary nodules using the 3-D deep leaky noisy-OR network. IEEE Trans Neural Netw Learn Syst, 2019, 30(11): 3484-3495.
|
22. |
Petousis P, Han S X, Aberle D, et al. Prediction of lung cancer incidence on the low-dose computed tomography arm of the national lung screening trial: a dynamic Bayesian network. Artif Intell Med, 2016, 72: 42-55.
|
23. |
Kiser K J, Ahmed S, Stieb S, et al. PleThora: pleural effusion and thoracic cavity segmentations in diseased lungs for benchmarking chest CT processing pipelines. Med Phys, 2020, 47(11): 5941-5952.
|
24. |
Wang H, Hu L, Wang J, et al. An image reconstruction algorithm of EIT based on pulmonary prior information. Frontiers of Electrical and Electronic Engineering in China, 2009, 4(2): 121-126.
|
25. |
Li X, Chen X, Wang Q, et al. Electrical impedance tomography imaging based on a new three-dimensional thorax model for assessing the extent of lung injury. AIP Advances, 2019, 9(12): 125310.
|