1. |
Pereira T, Tran N, Gadhoumi K, et al. Photoplethysmography based atrial fibrillation detection: a review. NPJ Digit Med, 2020, 3(1): 1-12.
|
2. |
Hagiwara Y, Fujita H, Oh S L, et al. Computer-aided diagnosis of atrial fibrillation based on ECG Signals: A review. Inf Sci, 2018, 467: 99-114.
|
3. |
Engdahl J, Rosenqvist M. Large‐scale screening studies for atrial fibrillation–is it worth the effort?. J Intern Med, 2021, 289(4): 474-492.
|
4. |
Healey J S, Connolly S J, Gold M R, et al. Subclinical atrial fibrillation and the risk of stroke. N Engl J Med, 2012, 366(2): 120-129.
|
5. |
Schläpfer J, Wellens H J. Computer-interpreted electrocardiograms: benefits and limitations. J Am Coll Cardiol, 2017, 70(9): 1183-1192.
|
6. |
Kirchhof P, Camm A J, Goette A, et al. Early rhythm-control therapy in patients with atrial fibrillation. N Engl J Med, 2020, 383(14): 1305-1316.
|
7. |
Andersen R S, Peimankar A, Puthusserypady S. A deep learning approach for real-time detection of atrial fibrillation. Expert Syst Appl, 2019, 115: 465-473.
|
8. |
Ramesh J, Solatidehkordi Z, Aburukba R, et al. Atrial fibrillation classification with smart wearables using short-term heart rate variability and deep convolutional neural networks. Sensors, 2021, 21(21): 7233.
|
9. |
Liu S, Wang A, Deng X, et al. MGNN: A multiscale grouped convolutional neural network for efficient atrial fibrillation detection. Comput Biol Med, 2022, 148: 105863.
|
10. |
Rahul J, Sharma L D. Artificial intelligence-based approach for atrial fibrillation detection using normalised and short-duration time-frequency ECG. Biomed Signal Process Control, 2022, 71: 103270.
|
11. |
Shen M, Zhang L, Luo X, et al. Atrial fibrillation detection algorithm based on manual extraction features and automatic extraction features// IOP Conference Series: Earth and Environmental Science. Bangkok: IOP Publishing, 2020: 12050.
|
12. |
季恒宇. 基于多分支卷积神经网络的心律失常分类算法研究. 长春: 吉林大学, 2024.
|
13. |
Hirsch G, Jensen S H, Poulsen E S, et al. Atrial fibrillation detection using heart rate variability and atrial activity: A hybrid approach. Expert Syst Appl, 2021, 169: 114452.
|
14. |
Pereira R, Andreão R V. Inter-patient detection of atrial fibrillation in short ECG segments based on LSTM network with multiple input layers. Res Biomed Eng, 2022, 38(2): 465-476.
|
15. |
Bucklew E A, Reis S E, Kancharla K. Wide QRS tachycardia in a man with a medical history of atrial fibrillation. JAMA Intern Med, 2019, 179(4): 567-569.
|
16. |
Evangelista A B R, Monteiro F R, Nearing B D, et al. Flecainide-induced QRS complex widening correlates with negative inotropy. Heart Rhythm, 2021, 18(8): 1416-1422.
|
17. |
Abedin Z. Differential diagnosis of wide QRS tachycardia: A review. J Arrhythm, 2021, 37(5): 1162-1172.
|
18. |
Hangiel U, Kuśnierz J, Bardyszewski A, et al. Atrial electrogram amplitude variability during atrial fibrillation ablation. J Cardiovasc Electrophysiol, 2023, 34(1): 35-43.
|
19. |
Squara F, Scarlatti D, Bun S S, et al. Fibrillatory wave amplitude evolution during persistent atrial fibrillation ablation: Implications for atrial substrate and fibrillation complexity assessment. J Clin Med, 2022, 11(15): 4519.
|
20. |
Alraies M C, Eisa N, Alraiyes A H, et al. The long and short of it: Ashman’s phenomenon. Am J Med, 2013, 126(11): 962-963.
|
21. |
Goldberger Z D, Rho R W, Page R L. Approach to the diagnosis and initial management of the stable adult patient with a wide complex tachycardia. Am J Cardiol, 2008, 101(10): 1456-1466.
|
22. |
Harrigan R A, Garg M. An interesting cause of wide complex tachycardia: Ashman’s phenomenon in atrial fibrillation. J Emerg Med, 2013, 45(6): 835-841.
|
23. |
Mousavi S, Afghah F, Acharya U R. HAN-ECG: An interpretable atrial fibrillation detection model using hierarchical attention networks. Comput Biol Med, 2020, 127: 104057.
|
24. |
Petmezas G, Haris K, Stefanopoulos L, et al. Automated atrial fibrillation detection using a hybrid CNN-LSTM network on imbalanced ECG datasets. Biomed Signal Process Control, 2021, 63: 102194.
|
25. |
Wang J. A deep learning approach for atrial fibrillation signals classification based on convolutional and modified Elman neural network. Future Gener Comput Syst, 2020, 102: 670-679.
|
26. |
濮玉, 朱俊江, 张德涛, 等. 基于改进卷积神经网络的房颤筛查算法. 生物医学工程学杂志, 2021, 38(4): 686-694.
|
27. |
Goldberger A L, Amaral L A, Glass L, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation, 2000, 101(23): e215-e220.
|
28. |
Reddy G U, Muralidhar M, Varadarajan S. ECG De-Noising using improved thresholding based on Wavelet transforms. Int J Comput Sci Netw Secur, 2009, 9(9): 221-225.
|
29. |
Wang Z, Zhu J, Yan T, et al. A new modified wavelet-based ECG denoising. Comput Assist Surg, 2019, 24: 174-183.
|
30. |
Marinho L B, de MM Nascimento N, Souza J W M, et al. A novel electrocardiogram feature extraction approach for cardiac arrhythmia classification. Future Gener Comput Syst, 2019, 97: 564-577.
|
31. |
Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 2818-2826.
|
32. |
Zhang H, Wu C, Zhang Z, et al. Resnest: Split-attention networks// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 2736-2746.
|