1. |
Chugh S S, Reinier K, Uy-Evanado A, et al. Prediction of sudden cardiac death manifesting with documented ventricular fibrillation or pulseless ventricular tachycardia, JACC Clinical Electrophysiology, 2022, 8(4): 411-423.
|
2. |
Loria-Romero M, Peregrina-Barreto H, Rangel-Magdaleno J, et al. Ventricular fibrillation characterization for sudden cardiac death risk prediction based on wavelet analysis//2022 IEEE International Symposium on Medical Measurements and Applications (MEMEA 2022), Messina, Italy: IEEE, 2022: 1-6.
|
3. |
Sun L, Wang Y, Qu Z, et al. BeatClass: a sustainable ECG classification system in IoT-based eHealth, IEEE Internet of Things Journal, 2022, 9(10): 7178-7195.
|
4. |
Holmstrom L, Zhang F Z, Ouyang D, et al. Artificial intelligence in ventricular arrhythmias and sudden death. Arrhythmia & Electrophysiology Review, 2023, 12: e17.
|
5. |
Aziz H M, Zarzecki M P, Garcia-Zamora S, et al. Pathogenesis and management of brugada syndrome: recent advances and protocol for umbrella reviews of meta-analyses in major arrhythmic events risk stratification, Journal of Clinical Medicine, 2022, 11(7): 1912.
|
6. |
Holmstrom L, Chugh H, Uy-Evanado A, et al. Temporal trends in incidence and survival from sudden cardiac arrest manifesting with shockable and nonshockable rhythms: a 16-year prospective study in a large US Community. Ann Emerg Med, 2023, 82(4): 463-471.
|
7. |
Reinier K, Dizon B, Chugh H, et al. Warning symptoms associated with imminent sudden cardiac arrest: a population-based case-control study with external validation. Lancet Digit Health, 2023, 5(11): e763-e773.
|
8. |
Yu P, Skinner M, Esangbedo I, et al. Predicting cardiac arrest in children with heart disease: a novel machine learning algorithm. J Clin Med, 2023, 12(7): 2728.
|
9. |
Chae M, Gil H W, Cho N J, et al. Machine learning-based cardiac arrest prediction for early warning system. Mathematics, 2022, 10(12): 2049.
|
10. |
Alves Pinto R, Proença T, Martins Carvalho M, et al. Long-term prognosis of out-of-hospital cardiac arrest due to idiopathic ventricular arrhythmias. Monaldi Arch Chest Dis, 2023, 93(4). DOI: 10.4081/monaldi.2023.2501.
|
11. |
Lee Y J, Cho K J, Kwon O, et al. A multicentre validation study of the deep learning-based early warning score for predicting in-hospital cardiac arrest in patients admitted to general wards. Resuscitation, 2021, 163: 78-85.
|
12. |
Shridharani A R, Parasuram H, Balaraman M, et al. Retrospective analysis of autonomic dysfunction in epilepsy patients from neurophysiological recordings. Neurology ASIA, 2022, 27: 649-661.
|
13. |
Park E J. Association between vitamin B12 status and heart rate variability in patients with ischemic stroke. Medicine (Baltimore), 2023, 102(16): e33428.
|
14. |
Pizarro C, Bosse F L, Begrich C, et al. Cardiac autonomic dysfunction in adult congenital heart disease. BMC Cardiovasc Disord, 2023, 23(1): 513.
|
15. |
Murugappan M, Murugesan L, Jerritta S, et al. Sudden cardiac arrest (SCA) prediction using ECG morphological features. Arabian Journal for Science and Engineering, 2021, 46: 947-961.
|
16. |
Pham V S, Nguyen A, Dang H B, et al. Diagnosis of sudden cardiac arrest using principal component analysis in automated external defibrillators. Sci Rep, 2023, 13(1): 8768.
|
17. |
Singhal A, Agarwal M. An automatic risk assessment system for sudden cardiac death using look ahead pattern. Multimedia Tools and Applications, 2023, 83: 27243-27258.
|
18. |
Taye G T, Hwang H J, Lim K M. Application of a convolutional neural network for predicting the occurrence of ventricular tachyarrhythmia using heart rate variability features. Sci Rep, 2020, 10(1): 6769.
|
19. |
Acharya U R, Fujita H, Sudarshan V K, et al. Automated prediction of sudden cardiac death risk using kolmogorov complexity and recurrence quantification analysis features extracted from HRV signals//2015 IEEE International Conference on Systems, Man, and Cybernetics (SMC 2015): Big Data Analytics for Human-Centric Systems, 2015: 1110-1115.
|
20. |
Houshyarifar V, Chehel Amirani M. An approach to predict sudden cardiac death (SCD) using time domain and bispectrum features from HRV signal. Biomed Mater Eng, 2016, 27(2-3): 275-285.
|
21. |
Ebrahimzadeh E, Manuchehri M S, Amoozegar S, et al. A time local subset feature selection for prediction of sudden cardiac death from ECG signal. Med Biol Eng Comput, 2018, 56(7): 1253-1270.
|
22. |
Ebrahimzadeh E, Foroutan A, Shams M, et al. An optimal strategy for prediction of sudden cardiac death through a pioneering feature-selection approach from HRV signal. Comput Methods Programs Biomed, 2019, 169: 19-36.
|
23. |
Velazquez-Gonzalez J R, Peregrina-Barreto H, Rangel-Magdaleno J J, et al. ECG-based identification of sudden cardiac death through sparse representations. Sensors (Basel), 2021, 21(22): 7666.
|
24. |
Goldberger A L, Amaral L A, Glass L, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation, 2000, 101(23): E215-E220.
|
25. |
Kim J Y, Park Y J, Park K M, et al. Non-invasive risk assessment and prediction of mortality in patients undergoing coronary artery bypass graft surgery. J Cardiovasc Dev Dis, 2023, 10(9): 365.
|
26. |
Neri L, Oberdier M T, Augello A, et al. Algorithm for mobile platform-based real-time QRS detection. Sensors (Basel), 2023, 23(3): 1625.
|