1. |
Ellett F, Marand A L, Irimia D. Multifactorial assessment of neutrophil chemotaxis efficiency from a drop of blood. Journal of Leukocyte Biology, 2022, 111(6): 1175-1184.
|
2. |
Yang Y, Liu L, Guo Z, et al. Investigation and assessment of neutrophil dysfunction early after severe burn injury. Burns, 2021, 47(8): 1851-1862.
|
3. |
Sun R, Huang J, Yang Y, et al. Dysfunction of low-density neutrophils in peripheral circulation in patients with sepsis. Scientific Reports, 2022, 12(1): 685.
|
4. |
Zhao W, Zhao H, Li M, et al. Microfluidic devices for neutrophil chemotaxis studies. Journal of Translational Medicine, 2020, 18(1): 168.
|
5. |
Ren J, Wang N, Guo P, et al. Recent advances in microfluidics-based cell migration research. Lab on a Chip, 2022, 22(18): 3361-3376.
|
6. |
Mcminn P H, Hind L E, Huttenlocher A, et al. Neutrophil trafficking on-a-chip: an in vitro, organotypic model for investigating neutrophil priming, extravasation, and migration with spatiotemporal control. Lab on a Chip, 2019, 19(21): 3697-3705.
|
7. |
Hu C, Liu J, Chen H, et al. Microfluidic platforms for gradient generation and its applications. Biochemistry & Analytical Biochemistry, 2017, 6(2): 100320.
|
8. |
李慧来, 杨逍, 吴晓松, 等. 多通道微流控芯片的设计、仿真及细胞迁移应用研究. 生物医学工程学杂志, 2022, 39(1): 128-138.
|
9. |
Ellett F, Jorgensen J, Marand A L, et al. Diagnosis of sepsis from a drop of blood by measurement of spontaneous neutrophil motility in a microfluidic assay. Nat Biomed Eng, 2018, 2(4): 207-214.
|
10. |
Ren X, Getschman A E, Hwang S, et al. Investigations on T cell transmigration in a human skin-on-chip (SoC) model. Lab on a Chip, 2021, 21(8): 1527-1539.
|
11. |
Yang K, Wu J, Peretz-soroka H, et al. Mkit: a cell migration assay based on microfluidic device and smartphone. Biosensors and Bioelectronics, 2018, 99: 259-267.
|
12. |
Berthier E, Surfus J, Verbsky J, et al. An arrayed high-content chemotaxis assay for patient diagnosis. Integrative Biology, 2010, 2(11-12): 630-638.
|
13. |
Wu J, Kumar-kanojia A, Hombach-klonisch S, et al. A radial microfluidic platform for higher throughput chemotaxis studies with individual gradient control. Lab on a Chip, 2018, 18(24): 3855-3864.
|
14. |
Yang K, Peretz-Soroka H, Wu J, et al. Fibroblast growth factor 23 weakens chemotaxis of human blood neutrophils in microfluidic devices. Scientific Reports, 2017, 7(1): 3100.
|
15. |
Jimenez-Valdes R J, Rodriguez-Moncayo R, Cedillo-Alcantar D F, et al. Massive parallel analysis of single cells in an integrated microfluidic platform. Analytical Chemistry, 2017, 89(10): 5210-5220.
|
16. |
Bhattacharjee N, Folch A. Large-scale microfluidic gradient arrays reveal axon guidance behaviors in hippocampal neurons. Microsystems & Nanoengineering, 2017, 3: 17003.
|
17. |
Agrawal N, Toner M, Irimia D. Neutrophil migration assay from a drop of blood. Lab on a Chip, 2008, 8(12): 2054-2061.
|
18. |
Butler K L, Ambravaneswaran V, Agrawal N, et al. Burn injury reduces neutrophil directional migration speed in microfluidic devices. PloS one, 2010, 5(7): e11921.
|
19. |
Hoang A N, Jones C N, Dimisko L, et al. Measuring neutrophil speed and directionality during chemotaxis, directly from a droplet of whole blood. Technology, 2013, 1(1): 49.
|
20. |
Sackmann E K H, Berthier E, Schwantes E A, et al. Characterizing asthma from a drop of blood using neutrophil chemotaxis. Proc Natl Acad Sci U S A, 2014, 111(16): 5813-5818.
|
21. |
Sackmann E K, Berthier E, Young E W, et al. Microfluidic kit-on-a-lid: a versatile platform for neutrophil chemotaxis assays. Blood, 2012, 120(14): e45-e53.
|
22. |
Jundi B, Ryu H, Lee D H, et al. Leukocyte function assessed via serial microlitre sampling of peripheral blood from sepsis patients correlates with disease severity. Nature Biomedical Engineering, 2019, 3(12): 961-973.
|
23. |
Jeon H, Lee D H, Jundi B, et al. Fully automated, sample-to-answer leukocyte functional assessment platform for continuous sepsis monitoring via microliters of blood. ACS Sensors, 2021, 6(7): 2747-2756.
|
24. |
Zeming K K, Lu R, Woo K L, et al. Multiplexed single-cell leukocyte enzymatic secretion profiling from whole blood reveals patient-specific immune signature. Analytical Chemistry, 2021, 93(10): 4374-4382.
|
25. |
Hou H W, Petchakup C, Tay H M, et al. Rapid and label-free microfluidic neutrophil purification and phenotyping in diabetes mellitus. Scientific Reports, 2016, 6: 29410.
|
26. |
Jiang F, Xiang N. Integrated microfluidic handheld cell sorter for high-throughput label-free malignant tumor cell sorting. Analytical Chemistry, 2022, 94(3): 1859-1866.
|
27. |
Vona G, Sabile A, Louha M, et al. Isolation by size of epithelial tumor cells: a new method for the immunomorphological and molecular characterization of circulating tumor cells. The American Journal of Pathology, 2000, 156(1): 57-63.
|
28. |
Zabaglo L, Ormerod M G, Parton M, et al. Cell filtration-laser scanning cytometry for the characterisation of circulating breast cancer cells. Cytometry A, 2003, 55(2): 102-108.
|
29. |
Ward P A. Chemotaxis of mononuclear cells. The Journal of Experimental Medicine, 1968, 128(5): 1201-1221.
|
30. |
Wilkinson P C, Komai-Koma M, Newman I. Locomotion and chemotaxis of lymphocytes. Autoimmunity, 1997, 26(1): 55-72.
|
31. |
Seo J, Lean M H, Kole A. Membrane-free microfiltration by asymmetric inertial migration. Applied Physics Letters, 2007, 91: 033901.
|
32. |
Bhagat A A, Hou H W, Li L D, et al. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation. Lab on a Chip, 2011, 11(11): 1870-1878.
|
33. |
Di Carlo D, Irimia D, Tompkins R G, et al. Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci U S A, 2007, 104(48): 18892-18897.
|
34. |
Di Carlo D. Inertial microfluidics. Lab on a Chip, 2009, 9(21): 3038-3046.
|
35. |
Bhagat A A S, Kuntaegowdanahalli S S, Papautsky I. Continuous particle separation in spiral microchannels using dean flows and differential migration. Lab on a Chip, 2008, 8(11): 1906-1914.
|
36. |
Ookawara S, Street D, Ogawa K. Numerical study on development of particle concentration profiles in a curved microchannel. Chemical Engineering Science, 2006, 61(11): 3714-3724.
|
37. |
Abdulla A, Liu W, Gholamipour-Shirazi A, et al. High-throughput isolation of circulating tumor cells using cascaded inertial focusing microfluidic channel. Analytical Chemistry, 2018, 90(7): 4397-4405.
|
38. |
Yang X, Gao C, Liu Y, et al. Simplified cell magnetic isolation assisted SC2 chip to realize “sample in and chemotaxis out”: validated by healthy and T2DM patients’ neutrophils. Micromachines, 2022, 13(11): 1820.
|
39. |
Wu J, Hillier C, Komenda P, et al. An all-on-chip method for testing neutrophil chemotaxis induced by fMLP and COPD patient’s sputum. Technology, 2016, 4(2): 104-109.
|
40. |
Alves-Filho J C, Freitas A, Souto F O, et al. Regulation of chemokine receptor by Toll-like receptor 2 is critical to neutrophil migration and resistance to polymicrobial sepsis. Proc Natl Acad Sci U S A, 2009, 106(10): 4018-4023.
|
41. |
Blackwood R A, Hartiala K T, Kwoh E E, et al. Unidirectional heterologous receptor desensitization between both the fMLP and C5a receptor and the IL-8 receptor. Journal of Leukocyte Biology, 1996, 60(1): 88-93.
|
42. |
Coles R B, Ranney R R, Freer R J, et al. Thermal regulation of FMLP receptors on human neutrophils. Journal of Leukocyte Biology, 1989, 45(6): 529-537.
|
43. |
Yang K, Wu J, Xu G, et al. A dual-docking microfluidic cell migration assay (D2-Chip) for testing neutrophil chemotaxis and the memory effect. Integrative Biology, 2017, 9(4): 303-312.
|