1. |
梁远仲, 王雯, 张秀媛. 中央型肺癌X线胸片与CT的临床诊断效果评价及诊断正确率分析. 影像研究与医学应用, 2022, 6(4): 160-162.
|
2. |
Yusuf G T, Fang C, Tran S, et al. A pictorial review of the utility of CEUS in thoracic biopsies. Insights Imaging, 2021, 12(1): 9.
|
3. |
周美君, 蒋喜文. 超声造影在中央型肺癌伴肺不张中的应用准确性探讨. 影像研究与医学应用, 2021, 5(23): 68-69.
|
4. |
朱丽静, 王兴华. 超声造影定量参数对肺部良恶性病变鉴别诊断的研究. 中国临床医学影像杂志, 2020, 31(1): 34-37.
|
5. |
Liang J, Wang D, Li H, et al. Contrast enhanced ultrasound for needle biopsy of thoracic lesions. Oncol Lett, 2020, 20(4): 75.
|
6. |
Mongodi S, De Luca D, Colombo A, et al. Quantitative lung ultrasound: technical aspects and clinical applications. Anesthesiology, 2021, 134(6): 949-965.
|
7. |
梁萍, 郭倩茹, 阿丽米热·合勒力, 等. 超声造影诊断继发性肺结核的临床价值. 影像研究与医学应用, 2022, 6(22): 160-162.
|
8. |
Laursen C B , Clive A , Hallifax R, et al. European Respiratory Society statement on thoracic ultrasound. Eur Respir J, 2021, 57(3): 2001519.
|
9. |
乔香梅, 陆锐, 马苗, 等. DWI在鉴别中心型肺癌与阻塞性肺不张中的应用. 医学影像学杂志, 2020, 30(8): 1376-1379.
|
10. |
谢青, 任彤, 孙梅, 等. DWI-MRI对区分中央型肺癌与阻塞性肺不张的价值. 中国临床研究, 2020, 33(8): 1097-1100.
|
11. |
Zhang H, Fu C, Fan M, et al. Reduction of inter-observer variability using MRI and CT fusion in delineating of primary tumor for radiotherapy in lung cancer with atelectasis. Front Oncol, 2022, 12: 841771.
|
12. |
康媛媛. 中央型肺癌临床诊断中CT检查与X线胸片的应用对比. 数理医药学杂志, 2021, 34(3): 357-358.
|
13. |
陈剑贤, 黄腾飞. CT增强扫描对中央型肺癌的诊断价值分析. 中国实用医药, 2019, 14(16): 43-44.
|
14. |
许恺, 王伯源, 白德波, 等. X线与CT诊断中央型肺癌的影像学特点和价值分析. 临床肺科杂志, 2012, 17(9): 1718-1719.
|
15. |
祝继青, 杨国平, 项光涨, 等. 中央型肺癌的X线与CT诊断对照分析. 中华肿瘤防治杂志, 2020, 27(S1): 62-63.
|
16. |
戴启斌. 螺旋CT诊断肺癌的应用与CT特征研究. 中国卫生标准管理, 2020, 11(2): 105-108.
|
17. |
陆志前, 王成林, 龙飞翔, 等. 多层螺旋CT重建在早期肺癌检查中的应用. 中国CT和MRI杂志, 2022, 20(5): 83-85.
|
18. |
Quint L E, Whyte R I, Kazerooni E A, et al. Stenosis of the central airways: evaluation by using helical CT with multiplanar reconstructions. Radiology, 1995, 194(3): 871-877.
|
19. |
王磊, 于丽, 任法云. CT增强扫描对中央型肺癌术前分期的诊断价值. 癌症进展, 2020, 18(24): 2520-2522.
|
20. |
Qi L P , Zhang X P , Tang L, et al. Using diffusion-weighted MR imaging for tumor detection in the collapsed lung: a preliminary study. European Radiology, 2009, 19(2): 333-341.
|
21. |
Onitsuka H, Tsukuda M, Araki A, et al. Differentiation of central lung tumor from postobstructive lobar collapse by rapid sequence computed tomography. Journal of Thoracic Imaging, 1991, 6(2): 28-31.
|
22. |
Kim C, Kim W, Park S J, et al. Application of dual-energy spectral computed tomography to thoracic oncology imaging. Korean J Radiol, 2020, 21(7): 838-850.
|
23. |
丁鹂, 李小梅, 许乙凯, 等. 双能量CT多参数定量分析在肺癌诊疗中的应用进展. 影像诊断与介入放射学, 2022, 31(6): 428-433.
|
24. |
何小群, 李琦, 罗天友, 等. 能谱CT在精准勾画继发阻塞性不张的中央型肺癌放疗靶区中的价值. 中国医学计算机成像杂志, 2021, 27(1): 52-56.
|
25. |
傅志颖, 陈亮, 邹南安, 等. 能谱CT在鉴别中央型肺癌与阻塞性肺不张中的价值研究. 中国医学创新, 2022, 19(34): 122-125.
|
26. |
方家杨, 梁长宇, 陶俊利, 等. 双能CT虚拟单能+图像鉴别肺癌和邻近肺不张的初探. 临床放射学杂志, 2021, 40(12): 2309-2314.
|
27. |
裴丽美, 李晓阳, 王洪峰. 能谱CT在鉴别中央型肺癌与阻塞性肺不张中的价值研究. 中国煤炭工业医学杂志, 2021, 24(3): 247-250.
|
28. |
Lococo F, Muoio B, Chiappetta M, et al. Diagnostic performance of PET or PET/CT with different radiotracers in patients with suspicious lung cancer or pleural tumours according to published meta-analyses. Contrast Media Mol Imaging, 2020, 2020: 5282698.
|
29. |
Farsad M. FDG PET/CT in the staging of lung cancer. Current Radiopharmaceuticals, 2020, 13(3): 195-203.
|
30. |
Yu T. COV is a readily available quantitative indicator of metabolic heterogeneity for predicting survival of patients with early and locally advanced NSCLC manifesting as central lung cancer. European Journal of Radiology, 2020, 132: 109338.
|
31. |
Wang N, Qiao Y, Song Y, et al. In 18F-positron emission tomography/computed tomography-guided precision radiotherapy for centrally located non-small cell lung cancer, tumor related atelectasis is a prognostic factor of survival. Frontiers in Oncology, 2022, 12: 898233.
|
32. |
宋志雨, 刘丹, 马天江, 等. PET/CT融合图像在非小细胞肺癌放疗靶区勾画中的临床价值. 河南医学研究, 2022, 31(8): 1397-1400.
|
33. |
Filice A, Casali M, Ciammella P, et al. Radiotherapy planning and molecular imaging in lung cancer. Current Radiopharmaceuticals, 2020, 13(3): 204-217.
|
34. |
宋颖秋, 王天禄, 党军, 等. PET/CT下合并肺不张非小细胞肺癌的治疗结果和预后分析. 中国肿瘤, 2017, 26(1): 68-72.
|
35. |
Mac Manus M P, Hicks R J. The role of positron emission tomography/computed tomography in radiation therapy planning for patients with lung cancer. Seminars in Nuclear Medicine, 2012, 42(5): 308-319.
|
36. |
Karki K, Saraiya S, Hugo G D, et al. Variabilities of magnetic resonance imaging–, computed tomography–, and positron emission tomography–computed tomography–based tumor and lymph node delineations for lung cancer radiation therapy planning. International Journal of Radiation Oncology Biology Physics, 2017, 99(1): 80-89.
|
37. |
Kumar S, Holloway L, Boxer M, et al. Variability of gross tumour volume delineation: MRI and CT based tumour and lymph node delineation for lung radiotherapy. Radiother Oncol, 2022, 167: 292-299.
|
38. |
Tyagi N, Cloutier M, Zakian K, et al. Diffusion-weighted MRI of the lung at 3T evaluated using echo-planar-based and single-shot turbo spin-echo-based acquisition techniques for radiotherapy applications. Journal of Applied Clinical Medical Physics, 2019, 20(1): 284-292.
|
39. |
Gupta A, Kikano E G, Bera K, et al. Dual energy imaging in cardiothoracic pathologies: a primer for radiologists and clinicians. Eur J Radiol Open, 2021, 8: 100324.
|
40. |
Krarup M M K, Fischer B M, Christensen T N. New PET tracers: current knowledge and perspectives in lung cancer. Seminars in Nuclear Medicine, 2022, 52(6): 781-796.
|
41. |
Crivellaro C, Guerra L. Respiratory gating and the performance of PET/CT in pulmonary lesions. Current Radiopharmaceuticals, 2020, 13(3): 218-227.
|
42. |
Le Pechoux C, Faivre-Finn C, Ramella S, et al. ESTRO ACROP guidelines for target volume definition in the thoracic radiation treatment of small cell lung cancer. Radiotherapy and Oncology, 2020, 152: 89-95.
|
43. |
Schiebler M L. Can solitary pulmonary nodules be accurately characterized with diffusion-weighted MRI?. Radiology, 2019, 290(2): 535-536.
|
44. |
Besson F L, Fernandez B, Faure S, et al. Diffusion-weighted imaging voxelwise-matched analyses of lung cancer at 3.0-T PET/MRI: reverse phase encoding approach for echo-planar imaging distortion correction. Radiology, 2020, 295(3): 692-700.
|
45. |
Chai R, Wang Q, Qin P, et al. Differentiating central lung tumors from atelectasis with contrast-enhanced CT-based radiomics features. Biomed Res Int, 2021, 2021: 5522452.
|