1. |
Holzapfel G A, Schulze-Bauer C A J, Feigl G, et al. Single lamellar mechanics of the human lumbar anulus fibrosus. Biomech Model Mechan, 2005, 3(3): 125-140.
|
2. |
Skaggs D L, Weidenbaum M, Iatridis J C, et al. Regional variation in tensile properties and biochemical composition of the human lumbar anulus fibrosus. Spine, 1994, 19(12): 1310-1319.
|
3. |
Newell N, Grigoriadis G, Christou A, et al. Material properties of bovine intervertebral discs across strain rates. J Mech Behav Biomed, 2017, 65: 824-830.
|
4. |
Pezowicz C A, Robertson P A, Broom N D. Intralamellar relationships within the collagenous architecture of the annulus fibrosus imaged in its fully hydrated state. J Anat, 2005, 207(4): 299-312.
|
5. |
Little J P, Adam C J. Geometric sensitivity of patient-specific finite element models of the spine to variability in user-selected anatomical landmarks. Comput Method Biomec, 2013, 18(6): 676-688.
|
6. |
Little J P, de Visser H, Pearcy M J, et al. Are coupled rotations in the lumbar spine largely due to the osseo-ligamentous anatomy?--a modeling study. Comput Method Biomec, 2008, 11(1): 95-103.
|
7. |
Adam C, Rouch P, Skalli W. Inter-lamellar shear resistance confers compressive stiffness in the intervertebral disc: An image-based modelling study on the bovine caudal disc. J Biomech, 2015, 48(16): 4303-4308.
|
8. |
Chen C S, Cheng C K, Liu C L, et al. Stress analysis of the disc adjacent to interbody fusion in lumbar spine. Med Eng Phys, 2001, 23(7): 485-493.
|
9. |
Schmidt H, Heuer F, Simon U, et al. Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus. Clin Biomech, 2006, 21(4): 337-344.
|
10. |
Shirazi-Adl A, Ahmed A M, Shrivastava S C. A finite element study of a lumbar motion segment subjected to pure sagittal plane moments. J Biomech, 1986, 19(4): 331-350.
|
11. |
Yang B, O’Connell G D. Effect of collagen fibre orientation on intervertebral disc torsion mechanics. Biomech Model Mechan, 2017, 16(6): 2005-2015.
|
12. |
Park W M, Kim K, Kim Y H. Effects of degenerated intervertebral discs on intersegmental rotations, intradiscal pressures, and facet joint forces of the whole lumbar spine. Comput Biol Med, 2013, 43(9): 1234-1240.
|
13. |
Schmidt H, Rohlmann A, Zander T, et al. Effect of multilevel lumbar disc arthroplasty on spine kinematics and facet joint loads in flexion and extension: a finite element analysis. Eur Spine J, 2012, 21(5): 663-674.
|
14. |
Kiapour A, Anderson D G, Spenciner D B, et al. Kinematic effects of a pedicle-lengthening osteotomy for the treatment of lumbar spinal stenosis. J Neurosurg-Spine, 2012, 17(4): 314-320.
|
15. |
Ayturk U M, Puttlitz C M. Parametric convergence sensitivity and validation of a finite element model of the human lumbar spine. Comput Method Biomec, 2011, 14(8): 695-705.
|
16. |
Shirazi-Adl A. Analysis of role of bone compliance on mechanics of a lumbar motion segment. J Biomech Eng, 1994, 116(4): 408-412.
|
17. |
Marini G, Studer H, Huber G, et al. Geometrical aspects of patient-specific modelling of the intervertebral disc: collagen fibre orientation and residual stress distribution. Biomech Model Mechan, 2016, 15(3): 543-560.
|
18. |
Yang B, Lu Y, Um C, et al. Relative nucleus pulposus area and position alter disk joint mechanics. J Biomech Eng, 2019, 141(5): 051004.
|
19. |
Zander T, Rohlmann A, Bergmann G. Influence of different artificial disc kinematics on spine biomechanics. Clin Biomech, 2009, 24(2): 135-142.
|
20. |
Li Q Y, Kim H J, Son J, et al. Biomechanical analysis of lumbar decompression surgery in relation to degenerative changes in the lumbar spine - Validated finite element analysis. Comput Biol Med, 2017, 89: 512-519.
|
21. |
Ambati D V, Wright E K, Lehman R A, et al. Bilateral pedicle screw fixation provides superior biomechanical stability in transforaminal lumbar interbody fusion: a finite element study. Spine J, 2015, 15(8): 1812-1822.
|
22. |
Szkoda-Poliszuk K, Żak M, Pezowicz C. Finite element analysis of the influence of three-joint spinal complex on the change of the intervertebral disc bulge and height. Int J Numer Method Biomed Eng, 2018, 34(9): e3107.1-e3107.13.
|
23. |
Ueno K, Liu Y K. A three-dimensional nonlinear finite element model of lumbar intervertebral joint in torsion. J Biomech Eng, 1987, 109(3): 200-209.
|
24. |
Anne P, Ferguson S J, Nolte L P, et al. Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis. Eur Spine J, 2003, 12(4): 413-420.
|
25. |
Dong R-C, Guo L-X. Human body modeling method to simulate the biodynamic characteristics of spine in vivo with different sitting postures. Int J Numer Meth Bio, 2017, 33(11): e2876.1-e2876.15.
|
26. |
O’Connell G D, Johannessen W, Vresilovic E J, et al. Human internal disc strains in axial compression measured noninvasively using magnetic resonance imaging. Spine, 2007, 32(25): 2860-2868.
|
27. |
Dreischarf M, Zander T, Shirazi-Adl A, et al. Comparison of eight published static finite element models of the intact lumbar spine: Predictive power of models improves when combined together. J Biomech, 2014, 47(8): 1757-1766.
|
28. |
Beckstein J C, Sounok S, Schaer T P, et al. Comparison of animal discs used in disc research to human lumbar disc: axial compression mechanics and glycosaminoglycan content. Spine, 2008, 33(6): E166-E173.
|
29. |
Pearcy M, Portek I, Shepherd J. Three-dimensional Xray analysis of normal movement in the lumbar spine. Spine, 1984, 9(3): 294-297.
|
30. |
Akiah M A, Tanaka M. Biomechanical investigation on the influence of the regional material degeneration of an intervertebral disc in a lower lumbar spinal unit: A finite element study. Comput Biol Med, 2018, 98: 26-38.
|
31. |
Farfan H F, Cossette J W, Robertson G H, et al. The effects of torsion on the lumbar intervertebral joints: the role of torsion in the production of disc degeneration. J Bone Joint Surg Am Volume, 1970, 52(3): 468-497.
|
32. |
Shirazi-Adl A, Ahmed A M, Shrivastava S C. Mechanical response of a lumbar motion segment in axial torque alone and combined with compression. Spine, 1986, 11(9): 914-927.
|
33. |
Kemper A R, McNally C, Duma S M. The influence of strain rate on the compressive stiffness properties of human lumbar intervertebral discs. Biomed Sci Instrum, 2007, 43: 176-181.
|
34. |
Newell N, Carpanen D, Evans J H, et al. Mechanical function of the nucleus pulposus of the intervertebral disc under high rates of loading. Spine, 2019, 44(15): 1035-1041.
|
35. |
Zander T, Dreischarf M, Timm A-K, et al. Impact of material and morphological parameters on the mechanical response of the lumbar spine – A finite element sensitivity study. J Biomech, 2017, 53: 185-190.
|