1. |
Livingston G, Sommerlad A, Orgeta V, et al. Dementia prevention, intervention, and care. Lancet, 2017, 390(10113): 2673-2734.
|
2. |
Gould N, Kendall T. Developing the NICE/SCIE guidelines for dementia care: The challenges of enhancing the evidence base for social and health care. Br J Soc Work, 2007, 37(3): 475-490.
|
3. |
Folstein M F, Folstein S E, Mchugh P R. “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res, 1975, 12(3): 189-198.
|
4. |
Nasreddine Z S, Phillips N A, Bédirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc, 2005, 53(4): 695-699.
|
5. |
陶帅, 韩星, 孔丽文, 等. 基于步态的机器学习模型识别遗忘型轻度认知障碍和阿尔茨海默病. 中国全科医学, 2022, 25(31): 3857-3865.
|
6. |
Wu S, MatsuurA T, Okura F, et al. Detecting lower MMSE scores in older adults using cross-trial features from a dual-task with gait and arithmetic. IEEE Access, 2021, 9: 150268-150282.
|
7. |
Jung D, Kim J, Kim M, et al. Classifying the risk of cognitive impairment using sequential gait characteristics and long short-term memory networks. IEEE J Biomed Health Inform, 2021, 25(10): 4029-4040.
|
8. |
Saho K, Uemura K, Sugano K, et al. Using micro-Doppler radar to measure gait features associated with cognitive functions in elderly adults. IEEE Access, 2019, 7: 24122-24131.
|
9. |
Noh B, Yoon H, Youm C, et al. Prediction of decline in global cognitive function using machine learning with feature ranking of gait and physical fitness outcomes in older adults. Int J Environ Res Public Health, 2021, 18(21): 11347.
|
10. |
Matsuura T, Sakashita K, Grushnikov A, et al. Statistical analysis of dual-task gait characteristics for cognitive score estimation. Sci Rep, 2019, 9(1): 1-12.
|
11. |
Jensen A R, Rohwer Jr W D. The Stroop color-word test: a review. Acta Psychol, 1966, 25: 36-93.
|
12. |
Bucks R S, Ashworth D L, Wilcock G K, et al. Assessment of activities of daily living in dementia: development of the Bristol Activities of Daily Living Scale. Age Ageing, 1996, 25(2): 113-120.
|
13. |
Tao S, Zhang X, Cai H, et al. Gait based biometric personal authentication by using MEMS inertial sensors. J Ambient Intell Humanized Comput, 2018, 9(5): 1705-1712.
|
14. |
陶帅, 吕泽平, 谢海群. 可穿戴步态辅助技术在康复养老领域中的应用. 科技导报, 2019, 37(22): 19-25.
|
15. |
White R, Agouris I, Fletcher E. Harmonic analysis of force platform data in normal and cerebral palsy gait. Clin Biomech, 2005, 20(5): 508-516.
|
16. |
Muir-Hunter S W, Montero-Odasso M. Gait cost of using a mobility aid in older adults with Alzheimer’s disease. J Am Geriatr Soc, 2016, 64(2): 437-438.
|
17. |
Pullanagari R R, Kereszturi G, Yule I. Integrating airborne hyperspectral, topographic, and soil data for estimating pasture quality using recursive feature elimination with random forest regression. Remote Sens, 2018, 10(7): 1117.
|
18. |
Utkin L V. An imprecise extension of SVM-based machine learning models. Neurocomputing, 2019, 331: 18-32.
|
19. |
Phan D, Nguyen N, Pathirana P N, et al. A random forest approach for quantifying gait ataxia with truncal and peripheral measurements using multiple wearable sensors. IEEE Sensors J, 2019, 20(2): 723-734.
|
20. |
Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc Ser B, 2005, 67(2): 301-320.
|
21. |
Cao Ying, Miao Qiguang, Liu Jiachen, et al. Advance and prospects of AdaBoost algorithm. Acta Automatica Sinica, 2013, 39(6): 745-758.
|
22. |
Rao H, Shi X, Rodrigue A K, et al. Feature selection based on artificial bee colony and gradient boosting decision tree. Appl Soft Comput, 2019, 74: 634-642.
|
23. |
Yao M, Zhu Y, Li J, et al. Research on predicting line loss rate in low voltage distribution network based on gradient boosting decision tree. Energies, 2019, 12(13): 2522.
|
24. |
Lindh-Rengifo M, Jonasson S B, Ullén S, et al. Components of gait in people with and without mild cognitive impairment. Gait Posture, 2022, 93: 83-89.
|
25. |
Schlachetzki J, Barth J, Marxreiter F, et al. Wearable sensors objectively measure gait parameters in Parkinson’s disease. PLoS One, 2017, 12(10): e0183989.
|
26. |
Ni L, Lv W, Sun D, et al. Pathological gait signatures of post stroke dementia with toe-off and heel-to-ground angles discriminate from Alzheimer’s disease. Front Aging Neurosci, 2021, 13: 766884.
|
27. |
Pieruccini-Faria F, Sarquis-adamson Y, Montero-odasso M. Mild cognitive impairment affects obstacle negotiation in older adults: results from “Gait and Brain Study”. Gerontology, 2019, 65(2): 164-173.
|
28. |
Ricciardi C, Amboni M, De Santis C, et al. Machine learning can detect the presence of mild cognitive impairment in patients affected by Parkinson’s Disease// 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA). BariI: EEE, 2020: 1-6.
|
29. |
Ginis P, Pirani R, Basaia S, et al. Focusing on heel strike improves toe clearance in people with Parkinson’s disease: an observational pilot study. Physiotherapy, 2017, 103(4): 485-490.
|
30. |
Alcock L, Galna B, Lord S, et al. Characterisation of foot clearance during gait in people with early Parkinson’s disease: Deficits associated with a dual task. J Biomech, 2016, 49(13): 2763-2769.
|