1. |
Baranwal N, Yu P K, Siegel N S. Sleep physiology, pathophysiology, and sleep hygiene. Prog Cardiovasc Dis, 2023, 77: 59-69.
|
2. |
Wang Z, Wang Z, Lu T, et al. The microbiota-gut-brain axis in sleep disorders. Sleep Med Rev, 2022, 65: 101691.
|
3. |
Titos I, Juginović A, Vaccaro A, et al. A gut-secreted peptide suppresses arousability from sleep. Cell, 2023, 186(7): 1382-1397.e21.
|
4. |
Wang G, Yang Y, Chen S, et al. Flexible dual-channel digital auscultation patch with active noise reduction for bowel sound monitoring and application. IEEE J Biomed Health Inform, 2022, 26(7): 2951-2962.
|
5. |
Du X, Allwood G, Webberley K M, et al. Noninvasive diagnosis of irritable bowel syndrome via bowel sound features: proof of concept. Clin Transl Gastroen, 2019, 10(3): 1-9.
|
6. |
Ozawa T, Saji E, Yajima R, et al. Reduced bowel sounds in Parkinson’s disease and multiple system atrophy patients. Clin Auton Res, 2011, 21(3): 181-184.
|
7. |
Goto J, Matsuda K, Harii N, et al. Usefulness of a real-time bowel sound analysis system in patients with severe sepsis (pilot study). J Artif Organs, 2015, 18(1): 86-91.
|
8. |
Ficek J, Radzikowski K, Nowak J K, et al. Analysis of gastrointestinal acoustic activity using deep neural networks. Sensors, 2021, 21(22): 7602.
|
9. |
Kim K S, Seo J H, Ryu S H, et al. Estimation algorithm of the bowel motility based on regression analysis of the jitter and shimmer of bowel sounds. Comput Meth Prog Bio, 2011, 104(3): 426-434.
|
10. |
Dimoulas C, Kalliris G, Papanikolaou G, et al. Bowel-sound pattern analysis using wavelets and neural networks with application to long-term, unsupervised, gastrointestinal motility monitoring. Expert Syst Appl, 2008, 34(1): 26-41.
|
11. |
Hadjileontiadis L J. Wavelet-based enhancement of lung and bowel sounds using fractal dimension thresholding--Part I: methodology. IEEE T Bio-Med Eng, 2005, 52(6): 1143-1148.
|
12. |
Kölle K, Aftab M F, Andersson L E, et al. Data driven filtering of bowel sounds using multivariate empirical mode decomposition. Biomed Eng Online, 2019, 18(1): 8-28.
|
13. |
肖苗. 基于CEEMDAN排列熵的先心病心音特征提取与识别研究. 昆明: 云南大学, 2019.
|
14. |
Ranta R, Louis-Dorr V, Heinrich C, et al. Digestive activity evaluation by multichannel abdominal sounds analysis. IEEE Trans Biomed Eng, 2010, 57(6): 1507-1519.
|
15. |
Yoshino H, Abe Y, Yoshino T, et al. Clinical application of spectral analysis of bowel sounds in intestinal obstruction. Dis Colon Rectum, 1990, 33(9): 753-757.
|
16. |
侯丽敏, 施晓宇, 童超, 等. 鼾声的基频分布与SAHS的关联性. 声学技术, 2019, 38(2): 176-181.
|
17. |
Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc London A, 1998, 454(1971): 903-995.
|
18. |
Yu Y, Zhang H, Singh V. Forward prediction of runoff data in data-scarce basins with an improved ensemble empirical mode decomposition (EEMD) model. Water, 2018, 10(4): 388-403.
|
19. |
Torres M E, Colominas M A, Schlotthauer G, et al. A complete ensemble empirical mode decomposition with adaptive noise// 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Prague: IEEE, 2011: 4144-4147.
|
20. |
荆钰霏, 李川涛, 王伟, 等. 基于CEEMDAN-CFAR的单通道脑电信号眼电伪迹去除方法研究. 医疗卫生装备, 2022, 43(4): 1-7.
|
21. |
Du X, Allwood G, Webberley K, et al. Bowel sounds identification and migrating motor complex detection with low-cost piezoelectric acoustic sensing device. Sensors, 2018, 18(12): 4240-4252.
|
22. |
王国静, 王卫东. 基于语音端点检测的全腹部肠鸣音信号识别. 中国医疗器械杂志, 2019, 43(2): 90-93.
|