1. |
Gadjradj P S, Ogenio K, Voigt I, et al. Ergonomics and related physical symptoms among neurosurgeons. World Neurosurgery, 2020, 134: 432-441.
|
2. |
Epstein S, Sparer E H, Tran B N, et al. Prevalence of work-related musculoskeletal disorders among surgeons and interventionalists: a systematic review and meta-analysis. JAMA Surgery, 2018, 153(2): 35-42.
|
3. |
Bergmann A, Bolm-Audorff U, Krone D, et al. Occupational strain as a risk for hip osteoarthritis. Deutsches Arzteblatt International, 2017, 114(35-36): 581-588.
|
4. |
Mcdonough C M, Jette A M. The contribution of osteoarthritis to functional limitations and disability. Clinics in Geriatric Medicine, 2010, 26(3): 387-399.
|
5. |
Tetteh E, Hallbeck M S, Mirka G A. Effects of passive exoskeleton support on EMG measures of the neck, shoulder and trunk muscles while holding simulated surgical postures and performing a simulated surgical procedure. Applied Ergonomics, 2022, 100: 103646.
|
6. |
Esquenazi A, Talaty M, Packel A, et al. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. American Journal of Physical Medicine & Rehabilitation, 2012, 91(11): 911-921.
|
7. |
Kawamoto H, Sankai Y. Power assist system HAL-3 for gait disorder person. Lecture Notes in Computer Science, 2002, 2398(1): 19-29.
|
8. |
Matsuzaki I, Ebara T, Tsunemi M, et al. Sit-stand endoscopic workstations equipped with a wearable chair. VideoGIE, 2019, 4(11): 498-500.
|
9. |
Kawahira H, Nakamura R, Shimomura Y, et al. Clinical use of a wearable lower limb support device for surgeries involving long periods of standing. Journal of Japan Society of Computer Aided Surgery, 2018, 20(3): 121-125.
|
10. |
Yan Z, Han B, Du Z, et al. Development and testing of a wearable passive lower-limb support exoskeleton to support industrial workers. Biocybernetics and Biomedical Engineering, 2021, 41(1): 221-238.
|
11. |
Zhu A, Shen Z, Shen H, et al. Design of a passive weight-support exoskeleton of human-machine multi-link// 2018 15th International Conference on Ubiquitous Robots. IEEE, 2018: 296-301.
|
12. |
Ridger R S, Ashford A I, Wattie S, et al. Sustained attention when squatting with and without an exoskeleton for the lower limbs. International Journal of Industrial Ergonomics, 2018, 66: 230-239.
|
13. |
Luger T, Seibt R, Cobb T J, et al. Influence of a passive lower-limb exoskeleton during simulated industrial work tasks on physical load, upper body posture, postural control and discomfort. Applied Ergonomics, 2019, 80(1): 152-160.
|
14. |
Anderson J, Williams A E, Nester C. Musculoskeletal disorders, foot health and footwear choice in occupations involving prolonged standing. International Journal of Industrial Ergonomics, 2021, 81: 103079.
|
15. |
Szeto G P, Ho P, Ting A c, et al. Work-related musculoskeletal symptoms in surgeons. Journal of Occupational Rehabilitation, 2009, 19(2): 175-184.
|
16. |
Albayrak A, van Veelen M A, Prins J F, et al. A newly designed ergonomic body support for surgeons. Surgical Endoscopy, 2007, 21(10): 1835-1840.
|
17. |
国家技术监督局. GB 10000-88 中国成年人人体尺寸. 北京: 中国标准出版社, 1988.
|
18. |
崔家硕. 用于下蹲时重力支撑的下肢外骨骼设计和分析. 武汉: 华中科技大学, 2019.
|
19. |
Su Q, Pei Z, Tang Z, et al. Design and analysis of a lower limb loadbearing exoskeleton. Actuators, 2022, 11(10): 285.
|
20. |
Scott S H, Winter D A. Talocrural and talocalcaneal joint kinematics and kinetics during the stance phase of walking. Journal of Biomechanics, 1991, 24(8): 743-752.
|
21. |
刘玉娇. 快速力量训练对优势侧与非优势侧腿力量素质影响效果的研究. 西安: 西安体育学院学报, 2010.
|
22. |
Lee M, Kim J, Son J, et al. Kinematic and kinetic analysis during forward and backward walking. Gait Posture, 2013, 38(4): 674-678.
|
23. |
宋和胜, 钱竞光, 唐潇. 基于软件OpenSim的人体运动建模理论及其应用领域概述. 医用生物力学, 2015, 30(4): 373-379.
|
24. |
Thelen D G, Anderson F C, Delp S L. Generating dynamic simulations of movement using computed muscle control. Journal of Biomechanics, 2003, 36(3): 321-328.
|