1. |
Salomao R, Ferreira B L, Salomao M C, et al. Sepsis: Evolving concepts and challenges. Braz J Med Biol Res, 2019, 52(4): e8595.
|
2. |
Srzic I, Nesek Adam V, Tunjic Pejak D. Sepsis definition: What’s new in the treatment guidelines. Acta Clin Croat, 2022, 61(Suppl 1): 67-72.
|
3. |
Iba T, Helms J, Connors J M, et al. The pathophysiology, diagnosis, and management of sepsis-associated disseminated intravascular coagulation. J Intensive Care, 2023, 11(1): 24.
|
4. |
Martin G S, Mannino D M, Eaton S, et al. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med, 2003, 348(16): 1546-1554.
|
5. |
Thome S, Begandt D, Pick R, et al. Intracellular beta2 integrin (CD11/CD18) interacting partners in neutrophil trafficking. Eur J Clin Invest, 2018, 48(Suppl 2): e12966.
|
6. |
Chen Z, Zhang H, Qu M, et al. Review: The emerging role of neutrophil extracellular traps in sepsis and sepsis-associated thrombosis. Front Cell Infect Microbiol, 2021, 11: 653228.
|
7. |
Hidalgo A, Libby P, Soehnlein O, et al. Neutrophil extracellular traps: From physiology to pathology. Cardiovasc Res, 2022, 118(13): 2737-2753.
|
8. |
Pires R H, Felix S B, Delcea M. The architecture of neutrophil extracellular traps investigated by atomic force microscopy. Nanoscale, 2016, 8(29): 14193-14202.
|
9. |
Scozzi D, Liao F, Krupnick A S, et al. The role of neutrophil extracellular traps in acute lung injury. Front Immunol, 2022, 13: 953195.
|
10. |
Morales-Primo A U, Becker I, Zamora-Chimal J. Neutrophil extracellular trap-associated molecules: A review on their immunophysiological and inflammatory roles. Int Rev Immunol, 2022, 41(2): 253-274.
|
11. |
Thakur M, Junho C V C, Bernhard S M, et al. NETs-induced thrombosis impacts on cardiovascular and chronic kidney disease. Circ Res, 2023, 132(8): 933-949.
|
12. |
Mazetto B M, Hounkpe B W, da Silva Saraiva S, et al. Association between neutrophil extracellular traps (NETs) and thrombosis in antiphospholipid syndrome. Thromb Res, 2022, 214: 132-137.
|
13. |
Kaltenmeier C, Yazdani H O, Handu S, et al. The role of neutrophils as a driver in hepatic ischemia-reperfusion injury and cancer growth. Front Immunol, 2022, 13: 887565.
|
14. |
Ling S, Xu J W. NETosis as a pathogenic factor for heart failure. Oxid Med Cell Longev, 2021, 2021: 6687096.
|
15. |
Wang Y, Li Y, Chen Z, et al. GSDMD-dependent neutrophil extracellular traps promote macrophage-to-myofibroblast transition and renal fibrosis in obstructive nephropathy. Cell Death Dis, 2022, 13(8): 693.
|
16. |
Petrelli A, Popp S K, Fukuda R, et al. The contribution of neutrophils and NETs to the development of type 1 diabetes. Front Immunol, 2022, 13: 930553.
|
17. |
Mutua V, Gershwin L J. A review of neutrophil extracellular traps (NETs) in disease: Potential anti-nets therapeutics. Clin Rev Allergy Immunol, 2021, 61(2): 194-211.
|
18. |
Lin H, Liu J, Li N, et al. NETosis promotes chronic inflammation and fibrosis in systemic lupus erythematosus and COVID-19. Clin Immunol, 2023, 254: 109687.
|
19. |
Bissenova S, Ellis D, Mathieu C, et al. Neutrophils in autoimmunity: When the hero becomes the villain. Clin Exp Immunol, 2022, 210(2): 128-140.
|
20. |
Yang X, Ma Y, Chen X, et al. Mechanisms of neutrophil extracellular trap in chronic inflammation of endothelium in atherosclerosis. Life Sci, 2023, 328: 121867.
|
21. |
Kenny E F, Herzig A, Kruger R, et al. Diverse stimuli engage different neutrophil extracellular trap pathways. Elife, 2017, 6: e24437.
|
22. |
Sakurai K, Miyashita T, Okazaki M, et al. Role for neutrophil extracellular traps (NETs) and platelet aggregation in early sepsis-induced hepatic dysfunction. In Vivo, 2017, 31(6): 1051-1058.
|
23. |
洪天添, 刘望, 黄嘉祺, 等. LPS刺激稳定黏附于ICAM-1上的中性粒细胞形成胞外诱捕网依赖于整合素Mac-1和细胞骨架蛋白. 生物医学工程学杂志, 2021, 38(5): 903-910.
|
24. |
Lotz S, Aga E, Wilde I, et al. Highly purified lipoteichoic acid activates neutrophil granulocytes and delays their spontaneous apoptosis via CD14 and TLR2. J Leukoc Biol, 2004, 75(3): 467-477.
|
25. |
Hann J, Bueb J L, Tolle F, et al. Calcium signaling and regulation of neutrophil functions: Still a long way to go. J Leukoc Biol, 2020, 107(2): 285-297.
|
26. |
de Bont C M, Koopman W J H, Boelens W C, et al. Stimulus-dependent chromatin dynamics, citrullination, calcium signalling and ROS production during NET formation. Biochim Biophys Acta Mol Cell Res, 2018, 1865(11 Pt A): 1621-1629.
|
27. |
Rochael N C, Guimaraes-Costa A B, Nascimento M T, et al. Classical ROS-dependent and early/rapid ROS-independent release of neutrophil extracellular traps triggered by Leishmania parasites. Sci Rep, 2015, 5: 18302.
|
28. |
Mazzoleni V, Zimmermann K, Smirnova A, et al. Staphylococcus aureus Panton-Valentine Leukocidin triggers an alternative NETosis process targeting mitochondria. FASEB J, 2021, 35(2): e21167.
|
29. |
Schonrich G, Raftery M J, Samstag Y. Devilishly radical network in COVID-19: Oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression. Adv Biol Regul, 2020, 77: 100741.
|
30. |
Venkataranganayaka Abhilasha K, Kedihithlu Marathe G. Bacterial lipoproteins in sepsis. Immunobiology, 2021, 226(5): 152128.
|
31. |
Ginsburg I. Role of lipoteichoic acid in infection and inflammation. Lancet Infect Dis, 2002, 2(3): 171-179.
|
32. |
Tan C, Aziz M, Wang P. The vitals of NETs. J Leukoc Biol, 2021, 110(4): 797-808.
|
33. |
Lee S K, Goh S Y, Wong Y Q, et al. Response of neutrophils to extracellular haemoglobin and LTA in human blood system. EBioMedicine, 2015, 2(3): 225-233.
|
34. |
Pilsczek F H, Salina D, Poon K K, et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol, 2010, 185(12): 7413-7425.
|