1. |
Lichtenberg A, Cebotari S, Tudorache I, et al. Flow-dependent re-endothelialization of tissue-engineered heart valves. J Heart Valve Dis, 2006, 15(2): 287-294.
|
2. |
Lichtenberg A, Tudorache I, Cebotari S, et al. Preclinical testing of tissue-engineered heart valves re-endothelialized under simulated physiological conditions. Circulation, 2006, 114(1 Suppl): 1559-1565.
|
3. |
Izadpanah P, Golchin A, Firuzyar T, et al. The effect of shear stress on cardiac differentiation of mesenchymal stem cells. Mol Biol Rep, 2022, 49(4): 3167-3175.
|
4. |
Nicolaides K H, Rosen D, Rabinowitz R, et al. Urine production and bladder function in fetuses with open spina bifida. Fetal Ther, 1988, 3(3): 135-140.
|
5. |
Coplen D E, Macarak E J, Levin R M. Developmental changes in normal fetal bovine whole bladder physiology. J Urol, 1994, 151(5): 1391-1395.
|
6. |
Wei W, Howard P S, Kogan B, et al. Urinary diversion results in marked decreases in proliferation and apoptosis in fetal bladder. J Urol, 2012, 188(4): 1306-1312.
|
7. |
Siddiqui H B, Dogru S, Lashkarinia S S, et al. Soft-tissue material properties and mechanogenetics during cardiovascular development. J Cardiovasc Dev Dis, 2022, 9(2): 64.
|
8. |
Jahanbakhsh A, Nourbakhsh M S, Bonakdar S, et al. Evaluation of alginate modification effect on cell-matrix interaction, mechanotransduction and chondrogenesis of encapsulated MSCs. Cell Tissue Res, 2020, 381(2): 255-272.
|
9. |
Elashry M I, Baulig N, Wagner A S, et al. Combined macromolecule biomaterials together with fluid shear stress promote the osteogenic differentiation capacity of equine adipose-derived mesenchymal stem cells. Stem Cell Res Ther, 2021, 12(1): 116.
|
10. |
Atala A. Tissue engineering of human bladder. Br Med Bull, 2011, 97: 81-104.
|
11. |
Tiemessen D, de Jonge P, Daamen W, et al. The effect of a cyclic uniaxial strain on urinary bladder cells. World J Urol, 2017, 35(10): 1531-1539.
|
12. |
Davis N F, Mooney R, Piterina A V, et al. Construction and evaluation of urinary bladder bioreactor for urologic tissue-engineering purposes. Urology, 2011, 78(4): 954-960.
|
13. |
Gao X, Wei T, Liao B, et al. Physiological stretch induced proliferation of human urothelial cells via integrin alpha6-FAK signaling pathway. Neurourol Urodyn, 2018, 37(7): 2114-2120.
|
14. |
Luo D Y, Wazir R, Tian Y, et al. Integrin αv mediates contractility whereas integrin α4 regulates proliferation of human bladder smooth muscle cells via FAK pathway under physiological stretch. J Urol, 2013, 190(4): 1421-1429.
|
15. |
Ringe J, Kaps C, Burmester G R, et al. Stem cells for regenerative medicine: advances in the engineering of tissues and organs. Naturwissenschaften, 2002, 89(8): 338-351.
|
16. |
Moreno-Manzano V, Zaytseva-Zotova D, López-Mocholí E, et al. Injectable gel form of a decellularized bladder induces adipose-derived stem cell differentiation into smooth muscle cells in vitro. Int J Mol Sci, 2020, 21(22): 8608.
|
17. |
Cross W R, Eardley I, Leese H J, et al. A biomimetic tissue from cultured normal human urothelial cells: analysis of physiological function. Am J Physiol Renal Physiol, 2005, 289(2): F459-F468.
|
18. |
Lock L T, Laychock S G, Tzanakakis E S. Pseudoislets in stirred-suspension culture exhibit enhanced cell survival, propagation and insulin secretion. J Biotechnol, 2011, 151(3): 278-286.
|
19. |
Feil G, Daum L, Amend B, et al. From tissue engineering to regenerative medicine in urology--the potential and the pitfalls. Adv Drug Deliv Rev, 2011, 63(4-5): 375-378.
|
20. |
Seliktar D, Black R A, Vito R P, et al. Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Ann Biomed Eng, 2000, 28(4): 351-362.
|
21. |
Riehl B D, Park J H, Kwon I K, et al. Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs. Tissue Eng Part B Rev, 2012, 18(4): 288-300.
|
22. |
Karbassi E, Fenix A, Marchiano S, et al. Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat Rev Cardiol, 2020, 17(6): 341-359.
|
23. |
Orsola A, Estrada C R, Nguyen H T, et al. Growth and stretch response of human exstrophy bladder smooth muscle cells: molecular evidence of normal intrinsic function. BJU Int, 2005, 95(1): 144-148.
|
24. |
Farhat W A, Yeger H. Does mechanical stimulation have any role in urinary bladder tissue engineering?. World J Urol, 2008, 26(4): 301-305.
|
25. |
Chen L, Wei T Q, Wang Y, et al. Simulated bladder pressure stimulates human bladder smooth muscle cell proliferation via the PI3K/SGK1 signaling pathway. J Urol, 2012, 188(2): 661-667.
|
26. |
Wei T Q, Luo D Y, Chen L, et al. Cyclic hydrodynamic pressure induced proliferation of bladder smooth muscle cells via integrin alpha5 and FAK. Physiol Res, 2014, 63(1): 127-134.
|
27. |
Wu T, Chen L, Wei T, et al. Effect of cyclic hydrodynamic pressure-induced proliferation of human bladder smooth muscle through Ras-related C3 botulinum toxin substrate 1, mitogen-activated protein kinase kinase 1/2 and extracellular regulated protein kinases 1/2. Int J Urol, 2012, 19(9): 867-874.
|
28. |
Sivaraman S, Ravishankar P, Rao R R. Differentiation and engineering of human stem cells for smooth muscle generation. Tissue Eng Part B Rev, 2023, 29(1): 1-9.
|
29. |
Hwang Y, Cha S H, Kim D, et al. Combination of PD98059 and TGF-β1 efficiently differentiates human urine-derived stem cells into smooth muscle cells. Int J Mol Sci, 2021, 22(19): 10532.
|
30. |
Sobue K, Hayashi K, Nishida W. Expressional regulation of smooth muscle cell-specific genes in association with phenotypic modulation. Molecular and Cellular Biochemistry, 1999, 190(1-2): 105-118.
|
31. |
Sulistyowati E, Hsu J H, Lee S J, et al. Potential actions of baicalein for preventing vascular calcification of smooth muscle cells in vitro and in vivo. Int J Mol Sci, 2022, 23(10): 5673.
|
32. |
Chen G, Chen S, Di X, et al. Survivin knockdown alleviates pathological hydrostatic pressure-induced bladder smooth muscle cell dysfunction and BOO-induced bladder remodeling via autophagy. Front Cell Dev Biol, 2022, 10: 999547.
|
33. |
Doyle A E. Hypertension and vascular disease. Am J Hypertens, 1991, 4(2): 103-106.
|
34. |
Kokubo Y, Matsumoto C. Hypertension is a risk factor for several types of heart disease: review of prospective studies. Adv Exp Med Biol, 2017, 956: 419-426.
|
35. |
Stover J, Nagatomi J. Cyclic pressure stimulates DNA synthesis through the PI3K/Akt signaling pathway in rat bladder smooth muscle cells. Ann Biomed Eng, 2007, 35(9): 1585-1594.
|