1. |
Kirson E D, Gurvich Z, Schneiderman R, et al. Disruption of cancer cell replication by alternating electric fields. Cancer Research, 2004, 64(9): 3288-3295.
|
2. |
Stupp R, Wong E T, Kanner A A, et al. NovoTTF-100A versus physician’ s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. European Journal of Cancer, 2012, 48(14): 2192-2202.
|
3. |
Kirson E D, Dbalý V, Tovaryš F, et al. Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors. Proceedings of the National Academy of Sciences, 2007, 104(24): 10152-10157.
|
4. |
Salzberg M, Kirson E, Palti Y, et al. A pilot study with very low-intensity, intermediatefrequency electric fields in patients with locally advanced and/or metastatic solid tumors. Onkologie, 2008, 31(7): 362-365.
|
5. |
Shi W, Blumenthal D T, Kebir S, et al. Global post-marketing safety surveillance of tumor treating fields (TTFields) in patients with high-grade glioma in clinical practice. Journal of Neuro-oncology, 2020, 148(3): 489-500.
|
6. |
Gera N, Yang A, Holtzman T S, et al. Tumor treating fields perturb the localization of septins and cause aberrant mitotic exit. Plos One, 2015, 10(5): e0125269.
|
7. |
Kissling C, Di Santo S. Tumor treating fields–behind and beyond inhibiting the cancer cell cycle. CNS Neurol Disord Drug Targets, 2020, 19(8): 599-610.
|
8. |
Giladi M, Schneiderman R S, Voloshin T, et al. Mitotic spindle disruption by alternating electric fields leads to improper chromosome segregation and mitotic catastrophe in cancer cells. Scientific Reports, 2015, 5: 18046.
|
9. |
Miranda P C, Mekonnen A, Salvador R, et al. Predicting the electric field distribution in the brain for the treatment of glioblastoma. Physics in Medicine & Biology, 2014, 59(15): 4137-4147.
|
10. |
Korshoej A R, Hansen F L, Thielscher A, et al. Impact of tumor position, conductivity distribution and tissue homogeneity on the distribution of tumor treating fields in a human brain: a computer modeling study. Plos One, 2017, 12(6): e0179214.
|
11. |
Korshoej A R, Hansen F L, Mikic N, et al. Importance of electrode position for the distribution of tumor treating fields (TTFields) in a human brain. Identification of effective layouts through systematic analysis of array positions for multiple tumor locations. Plos One, 2018, 13(8): e0201957.
|
12. |
Bomzon Z, Urman N, Wenger C, et al. Modelling tumor treating fields for the treatment of lung-based tumors. Annu Int Conf IEEE Eng Med Biol Soc. 2015: 6888-6891.
|
13. |
Timmons J J, Lok E, San P, et al. End-to-end workflow for finite element analysis of tumor treating fields in glioblastomas. Physics in Medicine & Biology, 2017, 62(21): 8264-8282.
|
14. |
Lok E, San P, Liang O, et al. Finite element analysis of tumor treating fields in a patient with posterior fossa glioblastoma. Journal of Neuro-oncology, 2020, 147(1): 125-133.
|
15. |
Yang X, Liu P, Xing H, et al. Skull modulated strategies to intensify tumor treating fields on brain tumor: a finite element study. Biomechanics and Modeling in Mechanobiology, 2022, 21(4): 1133-1144.
|
16. |
杜宗伦, 曹群生, 吕著海, 等. 肿瘤电场治疗的精确电磁建模与仿真研究. 临床神经外科杂志, 2022, 19(3): 289-295.
|
17. |
Ashburner J, Friston K. Multimodal image coregistration and partitioning--a unified framework. NeuroImage, 1997, 6(3): 209-217.
|
18. |
Ashburner J, Friston K J. Voxel-based morphometry--the methods. NeuroImage, 2000, 11(6): 805-821.
|
19. |
Good C D, Johnsrude I S, Ashburner J, et al. A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage, 2001, 14(1): 21-36.
|
20. |
Lombard A, Goffart N, Rogister B. Glioblastoma circulating cells: reality, trap or illusion?. Stem Cell International, 2015, 2015: 182985.
|
21. |
Lu Y, Li B, Xu J, et al. Dielectric properties of human glioma and surrounding tissue. International Journal of Hyperthermia, 1992, 8(6): 755-760.
|
22. |
Fonov V, Evans A, McKinstry R, et al. Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage. 2009, 47: 39-41.
|
23. |
Fonov V, Evans AC, Botteron K, et al. Unbiased average age-appropriate atlases for pediatric studies. NeuroImage. 2011, 54(1): 313-327.
|
24. |
Peloso R, Tuma D T, Jain R K. Dielectric properties of solid tumors during nonnothermia and hyperthermia. IEEE Transactions on Biomedical Engineering, 1984, 31(11): 725-728.
|
25. |
Latikka J, Kuurne T, Eskola H. Conductivity of living intracranial tissues. Physics in Medicine & Biology, 2001, 46(6): 1611-1616.
|
26. |
Gabriel S, Lau R W, Gabriel C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz, Phys. Med. Biol. 1996, 41(11): 2251-2269.
|
27. |
Gabriel C. Compilation of the dielectric properties of body tissues at RF and microwave frequencies. Brooks Air Force Base, 1996, DOI: 10.21236/ada303903.
|
28. |
李宏宇. 胶质母细胞瘤的位置和侧别与临床特性关系的研究分析. 杭州: 浙江大学, 2018.
|
29. |
Tan A C, Ashley D M, López G Y, et al. Management of glioblastoma: State of the art and Future Directions. CA: A Cancer Journal for Clinicians. 2020, 70(4): 299-312.
|
30. |
Davis M E. Glioblastoma: overview of disease and treatment. Clinical Journal of Oncology Nursing. 2016, 20(5 Suppl): S2-S8.
|
31. |
Chen T, Que Y T, Zhang Y H, et al. Using materialise's interactive medical image control system to reconstruct a model of a patient with rectal cancer and situs inversus totalis: a case report. World Journal of Clinical Cases, 2020, 8(4): 806-814.
|
32. |
Wang Z, Aarya I, Gueorguieva M, et al. Image-based 3D modeling and validation of radiofrequency interstitial tumor ablation using a tissue-mimicking breast phantom. International Journal of Computer Assisted Radiology and Surgery. 2012, 7(6): 941-948.
|