1. |
Iung B, Vahanian A. Epidemiology of valvular heart disease in the adult. Nat Rev Cardiol, 2011, 8(3): 162-172.
|
2. |
Roberts W C, Makhdumi M, Salam Y M. Body mass index in patients with operatively-excised congenitally bicuspid aortic valves comparing those with stenotic to those with purely regurgitant valves. Am J Cardiol, 2022, 181: 102-104.
|
3. |
Snyder Y, Jana S. Strategies for development of decellularized heart valve scaffolds for tissue engineering. Biomaterials, 2022, 288: 121675.
|
4. |
Yang Y, Wang Z, Chen Z, et al. Current status and etiology of valvular heart disease in China: a population-based survey. BMC Cardiovasc Disord, 2021, 21(1): 339.
|
5. |
Tam H, Zhang W, Feaver K R, et al. A novel crosslinking method for improved tear resistance and biocompatibility of tissue based biomaterials. Biomaterials, 2015, 66: 83-91.
|
6. |
Attia R Q, Raja S G. Surgical pericardial heart valves: 50 Years of evolution. Int J Surg, 2021, 94: 106121.
|
7. |
Bezuidenhout D, Williams D F, Zilla P. Polymeric heart valves for surgical implantation, catheter-based technologies and heart assist devices. Biomaterials, 2015, 36: 6-25.
|
8. |
Hofferberth S C, Saeed M Y, Tomholt L, et al. A geometrically adaptable heart valve replacement. Sci Transl Med, 2020, 12(531): eaay4006.
|
9. |
Sundt T M, Jneid H. Guideline update on indications for transcatheter aortic valve implantation based on the 2020 American College of Cardiology/American Heart Association Guidelines for Management of Valvular Heart Disease. JAMA Cardiol, 2021, 6(9): 1088-1089.
|
10. |
Tam D Y, Rocha R V, Wijeysundera H C, et al. Surgical valve selection in the era of transcatheter aortic valve replacement in the Society of Thoracic Surgeons Database. J Thorac Cardiovasc Surg, 2020, 159(2): 416-427.
|
11. |
Head S J, Celik M, Kappetein A P. Mechanical versus bioprosthetic aortic valve replacement. Eur Heart J, 2017, 38(28): 2183-2191.
|
12. |
Grebenik E A, Gafarova E R, Istranov L P, et al. Mammalian pericardium-based bioprosthetic materials in xenotransplantation and tissue engineering. Biotechnol J, 2020, 15(8): e1900334.
|
13. |
Polak R, Rodas A C D, Chicoma D L, et al. Inhibition of calcification of bovine pericardium after treatment with biopolymers, E-beam irradiation and in vitro endothelization. Mater Sci Eng C, 2013, 33(1): 85-90.
|
14. |
Vesely I. The evolution of bioprosthetic heart valve design and its impact on durability. Cardiovasc Pathol, 2003, 12(5): 277-286.
|
15. |
Sanchez D M, Gaitan D M, Leon A F, et al. Fixation of vascular grafts with increased glutaraldehyde concentration enhances mechanical properties without increasing calcification. ASAIO J, 2007, 53(3): 257-262.
|
16. |
Brockbank K G, Wright G J, Yao H, et al. Allogeneic heart valve storage above the glass transition at -80°C. Ann Thorac Surg, 2011, 91(6): 1829-1835.
|
17. |
Salinas S D, Clark M M, Amini R. The effects of −80 °C short-term storage on the mechanical response of tricuspid valve leaflets. J Biomech, 2020, 98: 109462.
|
18. |
Sui Y, Fan Q, Wang B, et al. Ice-free cryopreservation of heart valve tissue: The effect of adding MitoQ to a VS83 formulation and its influence on mitochondrial dynamics. Cryobiology, 2018, 81: 153-159.
|
19. |
Zouhair S, Aguiari P, Iop L, et al. Preservation strategies for decellularized pericardial scaffolds for off-the-shelf availability. Acta Biomater, 2019, 84: 208-221.
|
20. |
Brockbank K G, Lightfoot F G, Song Y C, et al. Interstitial ice formation in cryopreserved homografts: a possible cause of tissue deterioration and calcification in vivo. J Heart Valve Dis, 2000, 9(2): 200-206.
|
21. |
Merivaara A, Zini J, Koivunotko E, et al. Preservation of biomaterials and cells by freeze-drying: Change of paradigm. J Control Release, 2021, 336: 480-498.
|
22. |
Bjelosevic M, Seljak K B, Trstenjak U, et al. Aggressive conditions during primary drying as a contemporary approach to optimise freeze-drying cycles of biopharmaceuticals. Eur J Pharm Sci, 2018, 122: 292-302.
|
23. |
Mehanna M M, Abla K K. Recent advances in freeze-drying: variables, cycle optimization, and innovative techniques. Pharm Dev Technol, 2022, 27(8): 904-923.
|
24. |
Leirner A A, Tattini V, Pitombo R N M. Prospects in lyophilization of bovine pericardium. Artif Organs, 2009, 33(3): 221-229.
|
25. |
Wang S, Oldenhof H, Goecke T, et al. Sucrose diffusion in decellularized heart valves for freeze-drying. Tissue Eng Part C Methods, 2015, 21(9): 922-931.
|
26. |
Goecke T, Theodoridis K, Tudorache I, et al. In vivo performance of freeze-dried decellularized pulmonary heart valve allo- and xenografts orthotopically implanted into juvenile sheep. Acta Biomater, 2018, 68: 41-52.
|
27. |
Bhatnagar B, Tchessalov S. Advances in freeze drying of biologics and future challenges and opportunities. Drying Technologies for Biotechnology and Pharmaceutical Applications, 2020: 137-177.
|
28. |
Payne K J, Veis A. Fourier transform IR spectroscopy of collagen and gelatin solutions: deconvolution of the amide I band for conformational studies. Biopolymers, 1988, 27(11): 1749-1760.
|
29. |
Vidal Bde C, Mello M L. Collagen type I amide I band infrared spectroscopy. Micron, 2011, 42(3): 283-289.
|
30. |
Whelan A, Duffy J, Gaul R T, et al. Collagen fibre orientation and dispersion govern ultimate tensile strength, stiffness and the fatigue performance of bovine pericardium. J Mech Behav Biomed Mater, 2019, 90: 54-60.
|