1. |
中华人民共和国国家卫生和计划生育委员会. 职业性尘肺病的诊断: GBZ 70—2015. 北京: 中国标准出版社, 2016.
|
2. |
中华人民共和国国家卫生健康委员会. 2021年我国卫生健康事业发展统计公报. (2022-07-12) [2023-09-28]. https://www.gov.cn/xinwen/2022-07/12/content_5700670.htm.
|
3. |
李涛, 张建芳, 孟祥峰, 等. 尘肺病数据标注规范与质量控制专家共识(2020年版). 环境与职业医学, 2020, 37(6): 523-529.
|
4. |
国家质检总局. 尘肺X线诊断标准及处理原则: GB5906-1986. 北京: 中国标准出版社, 1986.
|
5. |
乔鹏飞, 杨军, 苏秉亮, 等. 尘肺病的影像学诊断现状及展望. 内蒙古医学杂志, 2006, 38(8): 742-744.
|
6. |
郑光远, 刘峡壁, 韩光辉. 医学影像计算机辅助检测与诊断系统综述. 软件学报, 2018, 29(5): 1471-1514.
|
7. |
周飞燕, 金林鹏, 董军. 卷积神经网络研究综述. 计算机学报, 2017, 40(6): 1229-1251.
|
8. |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 770-778.
|
9. |
周涛, 霍兵强, 陆惠玲, 等. 医学影像疾病诊断的残差神经网络优化算法研究进展. 中国图象图形学报, 2020, 25(10): 2079-2092.
|
10. |
汪伟. 基于深度卷积神经网络的尘肺病DR影像诊断研究. 唐山: 华北理工大学, 2021.
|
11. |
Zhang X Y, Zhou X Y, Lin M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6848-6856.
|
12. |
Zheng R, Zhang L L, Jin H. Pneumoconiosis identification in chest X-ray films with CNN-based transfer learning. CCF Trans HPC, 2021, 3: 186-200.
|
13. |
崔风涛, 王研, 丁新平, 等. 一种轻量级卷积神经网络在煤工尘肺早期阶段自动识别中的应用. 中华劳动卫生职业病杂志, 2023, 41(3): 177-182.
|
14. |
Wang Y, Cui F T, Ding X P. Automated identification of the preclinical stage of coal workers’ pneumoconiosis from digital chest radiography using three-stage cascaded deep learning model. Biomedical Signal Processing and Control, 2023, 83: 104607.
|
15. |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv, 2014, 2014: 1409-1556.
|
16. |
赵奇, 郝超凡, 邱翠娟, 等. 基于视觉几何组卷积神经网络的尘肺病诊断初探. 中国工业医学杂志, 2021, 34(6): 564-566,577.
|
17. |
舒甜督, 刘芳, 蔡茂. 基于卷积神经网络的肺部 CT 图像分类算法研究. 电子设计工程, 2022, 30(21): 170-174,179.
|
18. |
Wu S, Li G, Deng L, et al. L1- norm batch normalization for efficient training of Deep Neural Networks. IEEE Trans Neur Netw Learn Syst, 2019, 30(7): 2043-2051.
|
19. |
杨云, 张立泽清, 齐勇, 等. 基于残差网络的血管内超声图像识别. 计算机仿真, 2020, 37(4): 269-273.
|
20. |
Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 2261-2269.
|
21. |
张雅娟. 尘肺影像分期一致性研究与自动分期模型构建. 广州: 南方医科大学, 2021.
|
22. |
Fan L, Wang Z, Zhou J. LDADN: a local discriminant auxiliary disentangled network for key-region-guided chest X-ray image synthesis augmented in pneumoconiosis detection. Biomed Opt Express, 2022, 13(8): 4353-4369.
|
23. |
Rajpurkar P, Irvin J, Zhu K, et a1. CheXNet: radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv, 2017, 2017: 1711.05225v2.
|
24. |
Devnath L, Luo S, Summons P, et al. Automated detection of pneumoconiosis with multilevel deep features learned from chest X-Ray radiographs. Comput Biol Med, 2021, 129: 104125.
|
25. |
徐继伟, 杨云. 集成学习方法: 研究综述. 云南大学学报(自然科学版), 2018, 40(6): 1082-1092.
|
26. |
Devnath L, Luo S, Summons P, et al. Deep ensemble learning for the automatic detection of pneumoconiosis in coal worker’s chest X-ray radiography. J Clin Med, 2022, 11(18): 5342.
|
27. |
Christian S, Vincent V, Sergey I, et al. Rethinking the inception architecture for computer vision. arXiv, 2015, 2015: 1512.00567v3.
|
28. |
张兰兰. 基于迁移学习的尘肺病胸片分析与识别. 武汉: 华中科技大学, 2020.
|
29. |
庄福振, 罗平, 何清, 等. 迁移学习研究进展. 软件学报, 2015, 26(1): 26-39.
|
30. |
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation// Navab N, Hornegger J, Wells W, et al. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. Cham: Springer, 2015, 9351: 234-241.
|
31. |
王峥, 钱青俊, 张建芳, 等. 计算机辅助诊断在尘肺病诊断中应用价值. 中国职业医学, 2020, 47(4): 428-431.
|
32. |
Yang F, Tang Z R, Chen J, et al. Pneumoconiosis computer aided diagnosis system based on X-rays and deep learning. BMC Med Imaging, 2021, 21(1): 189.
|
33. |
Zhang L, Rong R, Li Q, et al. A deep learning-based model for screening and staging pneumoconiosis. Sci Rep, 2021, 11(1): 2201.
|
34. |
石鸣鸣. 基于Inception-ResNet-v2的肺部影像分类方法研究. 广州: 广东工业大学, 2021.
|
35. |
Lumini A. Comparison of different image data augmentation approaches. J Imaging, 2021, 7: 254.
|
36. |
Chlap P, Min H, Vandenberg N, et a1. A review of medical image data augmentation techniques for deep learning applications. J Med Imaging Radiat Oncol, 2021, 65(5): 545-546.
|
37. |
黄晓鸣, 何富运, 唐晓虎, 等. U-Net及其变体在医学图像分割中的应用研究综述. 中国生物医学工程学报, 2022, 41(5): 567-576.
|
38. |
Zhou P, Chen H J, Yu Z K, et al. Review of cross-modality medical image prediction. Acta Electronica Sinica, 2019, 47(1): 220-226.
|
39. |
Hu X, Zhou R, Hu M, et al. Differentiation and prediction of pneumoconiosis stage by computed tomography texture analysis based on U-Net neural network. Comput Methods Programs Biomed, 2022, 225: 107098.
|
40. |
Guo S, Wang G L, Han X. COVID-19 CT image denoising algorithm based on adaptive threshold and optimized weighted median filter. Biomed Signal Proces, 2022, 75: 103552.
|
41. |
王成霞, 王宁宁, 仇路, 等. 尘肺病胸部 CT 与 DR 胸片影像差异研究. 职业与健康, 2021, 37(1): 5-10.
|
42. |
刘瑞珍, 王峥, 钱青俊, 等. 两种尘肺病计算机智能诊断系统的性能评价. 智慧健康, 2023, 9(7): 1-5.
|
43. |
肖淑玉, 高静, 孙志谦, 等. 多层感知器神经网络模型对职业性煤工尘肺发病预测研究. 中国职业医学, 2021, 48(1): 19-25.
|