1. |
Sing S L, An J, Yeong W Y, et al. Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs. Journal of Orthopaedic Research, 2016, 34(3): 369-385.
|
2. |
Murphy S V, Atala A. 3D bioprinting of tissues and organs. Nature Biotechnology, 2014, 32(8): 773-785.
|
3. |
Wang X, Xu S, Zhou S, et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials, 2016, 83: 127-141.
|
4. |
Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 2005, 26(27): 5474-5491.
|
5. |
Liu Y, Wu G, de Groot K. Biomimetic coatings for bone tissue engineering of critical-sized defects. Journal of the Royal Society Interface, 2010, 7(Suppl 5): S631-S647.
|
6. |
Marin E, Fusi S, Pressacco M, et al. Characterization of cellular solids in Ti6Al4V for orthopaedic implant applications: trabecular titanium. Journal of the Mechanical Behavior of Biomedical Materials, 2010, 3(5): 373-381.
|
7. |
Martínez J, Song H, Dumas J, et al. Orthotropic k-nearest foams for additive manufacturing. ACM Transactions on Graphics, 2017, 36(4): 1-12.
|
8. |
Kapfer S C, Hyde S T, Mecke K, et al. Minimal surface scaffold designs for tissue engineering. Biomaterials, 2011, 32(29): 6875-6882.
|
9. |
Feng J, Liu B, Lin Z, et al. Isotropic porous structure design methods based on triply periodic minimal surfaces. Materials & Design, 2021, 210: 110050.
|
10. |
Vijayavenkataraman S, Kuan L Y, Lu W F. 3D-printed ceramic triply periodic minimal surface structures for design of functionally graded bone implants. Materials & Design, 2020, 191: 108602.
|
11. |
Wang Y. Periodic surface modeling for computer aided nano design. Computer-Aided Design, 2007, 39(3): 179-189.
|
12. |
Yoo D J. Porous scaffold design using the distance field and triply periodic minimal surface models. Biomaterials, 2011, 32(31): 7741-7754.
|
13. |
Melchels F P, Bertoldi K, Gabbrielli R, et al. Mathematically defined tissue engineering scaffold architectures prepared by stereolithography. Biomaterials, 2010, 31(27): 6909-6916.
|
14. |
邓珍波, 周长春, 樊渝江, 等. 多孔钛骨组织工程支架设计及孔结构表征. 稀有金属材料与工程, 2016, 45(9): 2287-2292.
|
15. |
Yang N, Zhou K. Effective method for multi-scale gradient porous scaffold design and fabrication. Mater Sci Eng C Mater Biol Appl, 2014, 43: 502-505.
|
16. |
Yang N, Quan Z, Zhang D, et al. Multi-morphology transition hybridization CAD design of minimal surface porous structures for use in tissue engineering. Computer-Aided Design, 2014, 56: 11-21.
|
17. |
Yang N, Tian Y, Zhang D. Novel real function based method to construct heterogeneous porous scaffolds and additive manufacturing for use in medical engineering. Medical Engineering & Physics, 2015, 37(11): 1037-1046.
|
18. |
刘佳辛, 贾鹏, 门玉涛, 等. 基于三周期极小曲面骨小梁结构的设计及优化. 中国组织工程研究, 2023, 27(7): 992-997.
|
19. |
Liu B, Liu M, Cheng H, et al. A new stress-driven composite porous structure design method based on triply periodic minimal surfaces. Thin-Walled Structures, 2022, 181: 1-19.
|
20. |
Yoo D. Computer-aided porous scaffold design for tissue engineering using triply periodic minimal surfaces. International Journal of Precision Engineering and Manufacturing, 2011, 12(1): 61-71.
|
21. |
Zhou M, Pagaldipti N, Thomas H L, et al. An integrated approach to topology, sizing, and shape optimization. Structural and Multidisciplinary Optimization, 2004, 26(5): 308-317.
|
22. |
Zhou M, Rozvany G I N. The COC algorithm, Part II: topological, geometrical and generalized shape optimization. Computer Methods in Applied Mechanics and Engineering, 1991, 89(1): 309-336.
|
23. |
Singh S P, Shukla M, Srivastava R K. Lattice modeling and CFD simulation for prediction of permeability in porous scaffolds. Materials Today: Proceedings, 2018, 5(9): 18879-18886.
|
24. |
Chen H, Liu Y, Wang C, et al. Design and properties of biomimetic irregular scaffolds for bone tissue engineering. Computers in Biology and Medicine, 2021, 130: 104241.
|
25. |
Sevilla P, Aparicio C, Planell J A, et al. Comparison of the mechanical properties between tantalum and nickel-titanium foams implant materials for bone ingrowth applications. Journal of Alloys and Compounds, 2007, 439(1-2): 67-73.
|
26. |
Morgan E F, Bayraktar H H, Keaveny T M. Trabecular bone modulus-density relationships depend on anatomic site. Journal of Biomechanics, 2003, 36(7): 897-904.
|
27. |
Li H, Wen J, Liu Y, et al. Progress in research on biodegradable magnesium alloys: a review. Advanced Engineering Materials, 2020, 22(7): 2000213.
|
28. |
Arjunan A, Demetriou M, Baroutaji A, et al. Mechanical performance of highly permeable laser melted Ti6Al4V bone scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 102: 103517.
|
29. |
屈华伟, 韩振宇, 卓越, 等. 骨组织工程多孔生物支架设计研究进展. 机械工程学报, 2019, 55(15): 71-80.
|
30. |
Chua C K, Leong K F, Cheah C M, et al. Development of a tissue engineering scaffold structure library for rapid prototyping. Part 1: investigation and classification. International Journal of Advanced Manufacturing Technology, 2003, 21(4): 291-301.
|
31. |
Chua C K, Leong K F, Cheah C M, et al. Development of a tissue engineering scaffold structure library for rapid prototyping. Part 2: parametric library and assembly program. International Journal of Advanced Manufacturing Technology, 2003, 21(4): 302-312.
|
32. |
Hollister S J. Porous scaffold design for tissue engineering. Nature Materials, 2005, 4(7): 518-524.
|
33. |
Deering J, Dowling K I, Dicecco L A, et al. Selective Voronoi tessellation as a method to design anisotropic and biomimetic implants. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 116: 104361.
|
34. |
Roh H, Jung S, Kook M, et al. In vitro study of 3D PLGA/n-HAp/β-TCP composite scaffolds with etched oxygen plasma surface modification in bone tissue engineering. Applied Surface Science, 2016, 388: 321-330.
|
35. |
Hollister S J, Levy R A, Chu T, et al. An image-based approach for designing and manufacturing craniofacial scaffolds. International Journal of Oral and Maxillofacial Surgery, 2000, 29(1): 67-71.
|