1. |
Razin S V, Ulianov S V. Gene functioning and storage within a folded genome. Cell Mol Biol Lett, 2017, 22(1): 18.
|
2. |
Lieberman-Aiden E, Van Berkum N L, Williams L, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 2009, 326(5950): 289-293.
|
3. |
Rocha P P, Raviram R, Bonneau R, et al. Breaking TADs: insights into hierarchical genome organization. Epigenomics-UK, 2015, 7(4): 523-526.
|
4. |
Dixon J R, Selvaraj S, Yue F, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 2012, 485(7398): 376-80.
|
5. |
Filippova D, Patro R, Duggal G, et al. Identification of alternative topological domains in chromatin. Algorithm Mol Bio, 2014, 9(1): 14.
|
6. |
Shin H, Shi Y, Dai C, et al. TopDom: an efficient and deterministic method for identifying topological domains in genomes. Nucleic Acids Res, 2016, 44(7): e70.
|
7. |
Zhan Y, Mariani L, Barozzi I, et al. Reciprocal insulation analysis of Hi-C data shows that TADs represent a functionally but not structurally privileged scale in the hierarchical folding of chromosomes. Genome Res, 2017, 27(3): 479-490.
|
8. |
Yu W, He B, Tan K. Identifying topologically associating domains and subdomains by Gaussian Mixture model and Proportion test. Nat Commun, 2017, 8(1): 535.
|
9. |
Wang X T, Cui W, Peng C. HiTAD: detecting the structural and functional hierarchies of topologically associating domains from chromatin interactions. Nucleic Acids Res, 2017, 45(19): e163.
|
10. |
Levy-Leduc C, Delattre M, Mary-Huard T, et al. Two-dimensional segmentation for analyzing Hi-C data. Bioinformatics, 2014, 30(17): i386-i392.
|
11. |
Weinreb C, Raphael B J. Identification of hierarchical chromatin domains. Bioinformatics, 2016, 32(11): 1601-1609.
|
12. |
Ron G, Globerson Y, Moran D, et al. Promoter-enhancer interactions identified from Hi-C data using probabilistic models and hierarchical topological domains. Nat Commun, 2017, 8(1): 2237.
|
13. |
Serra F, Baù D, Goodstadt M, et al. Automatic analysis and 3D-modelling of Hi-C data using TADbit reveals structural features of the fly chromatin colors. Plos Comput Biol, 2017, 13(7): e1005665.
|
14. |
Xing H, Wu Y, Zhang M Q, et al. Deciphering hierarchical organization of topologically associated domains through change-point testing. BMC Bioinformatics, 2021, 22(1): 183.
|
15. |
Oluwadare O, Cheng J. ClusterTAD: an unsupervised machine learning approach to detecting topologically associated domains of chromosomes from Hi-C data. BMC Bioinformatics, 2017, 18(1): 480.
|
16. |
Haddad N, Vaillant C, Jost D. IC-Finder: inferring robustly the hierarchical organization of chromatin folding. Nucleic Acids Res, 2017, 45(10): e81.
|
17. |
Gong H, Yang Y, Zhang X, et al. CASPIAN: A method to identify chromatin topological associated domains based on spatial density cluster. Comput Struct Biotec, 2022, 20: 4816-4824.
|
18. |
Gong H, Zhang D, Zhang X. TOAST: A novel method for identifying topologically associated domains based on graph auto-encoders and clustering. Comput Struct Biotec, 2023, 21: 4759-4768.
|
19. |
Yan K K, Lou S, Gerstein M. MrTADFinder: A network modularity based approach to identify topologically associating domains in multiple resolutions. PLoS Comput Biol, 2017, 13(7): e1005647.
|
20. |
Norton H K, Emerson D J, Huang H, et al. Detecting hierarchical genome folding with network modularity. Nat Methods, 2018, 15(2): 119-122.
|
21. |
Imakaev M, Fudenberg G, Mccord R P, et al. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat Methods, 2012, 9(10): 999-1003.
|
22. |
Knight P A, Ruiz D. A fast algorithm for matrix balancing. IMA J Numer Anal, 2012, 33(3): 1029-1047.
|
23. |
Ankerst M, Breunig M M, Kriegel H-P, et al. OPTICS: ordering points to identify the clustering structure. SIGMOD Rec, 1999, 28(2): 49-60.
|
24. |
Bentley J L. Multidimensional binary search trees used for associative searching. Commun Acm, 1975, 18(9): 509-517.
|
25. |
Wang Y, Li Y, Gao J, et al. A novel method to identify topological domains using Hi-C data. Quant Biol, 2015, 3(2): 81-89.
|
26. |
Trussart M, Serra F, Baù D, et al. Assessing the limits of restraint-based 3D modeling of genomes and genomic domains. Nucleic Acids Res, 2015, 43(7): 3465-3477.
|
27. |
Durand N C, Robinson J T, Shamim M S, et al. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst, 2016, 3(1): 99-101.
|
28. |
Kim S, Yu N-K, Kaang B-K. CTCF as a multifunctional protein in genome regulation and gene expression. Exp Mol Med, 2015, 47(6): e166-e166.
|
29. |
Zuin J, Dixon J R, Van Der Reijden M I J A, et al. Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells. Proc Nat Acad Sci, 2014, 111(3): 996-1001.
|
30. |
Crane E, Bian Q, McCord R P, et al. Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature, 2015, 523(7559): 240-244.
|
31. |
Roayaei Ardakany A, Lonardi S. Efficient and accurate detection of topologically associating domains from contact maps// 17th International Workshop on Algorithms in Bioinformatics (WABI 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017, 88: 22: 1-22: 11.
|