1. |
Kumari S, Choudhary P K, Shukla R, et al. Recent advances in nanotechnology based combination drug therapy for skin cancer. J Biomater Sci Polym Ed, 2022, 33(11): 1435-1468.
|
2. |
Steiner A, Binder M, Schemper M, et al. Statistical evaluation of epiluminescence microscopy criteria for melanocytic pigmented skin lesions. J Am Acad Dermatol, 1993, 29(4): 581-588.
|
3. |
Celebi M E, Iyatomi H, Schaefer G, et al. Lesion border detection in dermoscopy images. Comput Med Imaging Graph, 2009, 33(2): 148-153.
|
4. |
Ganster H, Pinz P, Rohrer R, et al. Automated melanoma recognition. IEEE Trans Med Imaging, 2001, 20(3): 233-239.
|
5. |
Yu L, Chen H, Dou Q, et al. Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans Med Imaging, 2017, 36(4): 994-1004.
|
6. |
Codella N, Cai J, Abedini M, et al. Deep learning, sparse coding, and SVM for melanoma recognition in dermoscopy images// International Workshop on Machine Learning in Medical Imaging. Munich: MLMI, 2015: 118-126.
|
7. |
Esteva A, Kuprel B, Novoa R A, et al. Dermatologist-levelclassification of skin cancer with deep neural networks. Nature, 2017, 542(7639): 115-118.
|
8. |
Kawahara J, BenTaieb A, Hamarneh G. Deep features to classify skin lesions// 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). Prague: IEEE, 2016: 1397-1400.
|
9. |
Ayas S. Multiclass skin lesion classification in dermoscopic images using swin transformer model. Neural Comput Appl, 2023, 35(9): 6713-6722.
|
10. |
Liu Z, Lin Y, Cao Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows// Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 10012-10022.
|
11. |
Liu Z, Mao H, Wu C Y, et al. A convnet for the 2020s// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 11976-11986.
|
12. |
Woo S, Park J, Lee J Y, et al. Cbam: Convolutional block attention module// Proceedings of the European Conference on Computer Vision (ECCV). Munich: ECCV, 2018: 3-19.
|
13. |
Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510-4520.
|
14. |
Romdhane T F, Alhichri H, Ouni R, et al. Electrocardiogram heartbeat classification based on a deep convolutional neural network and focal loss. Comput Biol Med, 2020, 123: 103866.
|
15. |
Tschandl P, Rosendahl C, Kittler H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci Data, 2018, 5(1): 180161.
|
16. |
Combalia M, Codella N C F, Rotemberg V, et al. BCN20000: Dermoscopic lesions in the wild. arXiv, 2019, 2019: 1908.02288.
|
17. |
Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4700-4708.
|
18. |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE 2016: 770-778.
|
19. |
Ali R, Hardie R C, Narayanan B N, et al. Deep learning ensemble methods for skin lesion analysis towards melanoma detection// 2019 IEEE National Aerospace and Electronics Conference (NAECON). Dayton: IEEE, 2019: 311-316.
|
20. |
Pacheco A G C, Ali A R, Trappenberg T. Skin cancer detection based on deep learning and entropy to detect outlier samples. arXiv, 2019, 2019: 1909.04525.
|
21. |
Ali R, Hardie R C, De Silva M S, et al. Skin lesion segmentation and classification for ISIC 2018 by combining deep CNN and handcrafted features. arXiv, 2019, 2019: 1908.05730.
|
22. |
Ahmed S A A, Yanikoğlu B, Göksu Ö, et al. Skin lesion classification with deep CNN ensembles// 2020 28th Signal Processing and Communications Applications Conference (SIU). Gaziantep: IEEE, 2020: 1-4.
|
23. |
Almaraz-Damian J A, Ponomaryov V, Sadovnychiy S, et al. Melanoma and nevus skin lesion classification using handcraft and deep learning feature fusion via mutual information measures. Entropy, 2020, 22(4): 484.
|
24. |
Guissous A E. Skin lesion classification using deep neural network. arXiv, 2019, 2019: 1911.07817.
|
25. |
Zhang J, Xie Y, Xia Y, et al. Attention residual learning for skin lesion classification. IEEE Trans Med Imaging, 2019, 38(9): 2092-2103.
|
26. |
Benyahia S, Meftah B, Lézoray O. Multi-features extraction based on deep learning for skin lesion classification. Tissue Cell, 2022, 74: 101701.
|
27. |
Afza F, Sharif M, Khan M A, et al. Multiclass skin lesion classification using hybrid deep features selection and extreme learning machine. Sensors, 2022, 22(3): 799.
|