1. |
Sikander G, Anwar S. Driver fatigue detection systems: A review. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(6): 2339-2352.
|
2. |
Deng S, Yu H, Lu C. Research on operation characteristics and safety risk forecast of bus driven by multisource forewarning data. Journal of Advanced Transportation, 2020, 2020: 6623739.
|
3. |
Riera L, Ozcan K, Merickel J, et al. Detecting and tracking unsafe lane departure events for predicting driver safety in challenging naturalistic driving data//2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas: IEEE, 2020: 238-245.
|
4. |
Jeon Y, Kim B, Baek Y. Ensemble CNN to detect drowsy driving with in-vehicle sensor data. Sensors, 2021, 21(7): 2372.
|
5. |
Jia Huijie, Xiao Zhongjun, Ji Peng. Fatigue driving detection based on deep learning and multi-index fusion. IEEE Access, 2021, 9: 147054-147062.
|
6. |
Yang H, Liu L, Min W D, et al. Driver yawning detection based on subtle facial action recognition. IEEE Transactions on Multimedia, 2021, 23: 572-583.
|
7. |
Huang R, Wang Y, Li Z J, et al. RF-DCM: multi-granularity deep convolutional model based on feature recalibration and fusion for driver fatigue detection. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(1): 630-640.
|
8. |
张鸿. 基于驾驶员生理信号的疲劳驾驶检测及其预警方法研究. 长春: 吉林大学, 2022.
|
9. |
Pei Z, Wang Hongtao, Bezerianos A, et al. EEG-based multiclass workload identification using feature fusion and selection. IEEE Transactions on Instrumentation and Measurement, 2020, 70: 4001108.
|
10. |
Shi L C, Jiao Y Y, Lu B L. Differential entropy feature for EEG-based vigilance estimation//2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka: IEEE, 2013: 6627-6630.
|
11. |
Wu W, Sun W, Wu Q, et al. Multimodal vigilance estimation using deep learning. IEEE Transactions on Cybernetics, 2020, 52(5): 3097-3110.
|
12. |
Lawhern V J, Solon A J, Waytowich N R, et al. EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces. Journal of Neural Engineering, 2018, 15(5): 056013.
|
13. |
Ko W, Oh K, Jeon E, et al. VIGNET: a deep convolutional neural network for eeg-based driver vigilance estimation//2020 8th International Winter Conference on Brain-Computer Interface (BCI). Gangwon: IEEE, 2020: 1-3.
|
14. |
Shi Jinxuan, Wang Kun. Fatigue driving detection method based on time-space-frequency features of multimodal signals. Biomedical Signal Processing and Control, 2023, 84: 104744.
|
15. |
Zhang G, Etemad A. Capsule attention for multimodal EEG-EOG representation learning with application to driver vigilance estimation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29: 1138-1149.
|
16. |
Mohib S W. Driver fatigue detection with single EEG channel using transfer learning//2019 IEEE International Conference on Imaging Systems and Techniques (IST), Abu Dhabi: IEEE, 2019: 1-6.
|
17. |
崔兴然, 秦泽光, 高之琳, 等. 可穿戴脑电信号在抑郁症识别和个性化音乐干预中的应用与挑战. 生物医学工程学杂志, 2023, 40(6): 1093-1101.
|
18. |
Ratti E, Waninger S, Berka C, et al. Comparison of medical and consumer wireless EEG systems for use in clinical trials. Frontiers in Human Neuroscience, 2017, 11: 398.
|
19. |
张锐, 刘家俊, 陈明明, 等. 基于小波变换—集合经验模态分解的单通道脑电信号眼电伪迹自动去除研究. 生物医学工程学杂志, 2021, 38(3): 473-482.
|
20. |
徐曹军. 单通道脑电信号的分析与应用研究. 南京: 南京邮电大学, 2022.
|
21. |
Shahbakhti M, Beiramvand M, Nasiri E, et al. Fusion of EEG and eye blink analysis for detection of driver fatigue. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31: 2037-2046.
|
22. |
Arif S, Munawar S, Ali H. Driving drowsiness detection using spectral signatures of EEG-based neurophysiology. Frontiers in Physiology, 2023, 14: 1153268.
|
23. |
Hadra M, Abdelrahman I. Automatic EEG-based alertness classification using sparse representation and dictionary learning. Journal of Biomedical Engineering and Medical Imaging, 2020, 7(5): 19-28.
|
24. |
Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings Mathematical Physical and Engineering Sciences, 1998, 454(1971): 903-995.
|
25. |
Guennec A L, Malinowski S, Tavenard R. Data augmentation for time series classification using convolutional neural networks//ECML/PKDD Workshop on Advanced Analytics and Learning on Temporal Data, Riva Del Garda, Italy, 2016: 01357973.
|
26. |
Wu Haixu, Hu Tengge, Liu Yong, et al. Timesnet: temporal 2D-variation modeling for general time series analysis. arXiv preprint, 2022, arXiv: 2210.02186.
|
27. |
Howard A, Sandler M, Chu G, et al. Searching for mobilenetv3//2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul: IEEE, 2019: 1314-1324.
|
28. |
Khosla P, Teterwak P, Wang C, et al. Supervised contrastive learning. Neural Information Processing Systems, 2020, 33: 18661-18673.
|
29. |
Zheng W L, Lu B L. A multimodal approach to estimating vigilance using EEG and forehead EOG. Journal of Neural Engineering, 2017, 14(2): 026017.
|
30. |
Ko L W, Komarov O, Lai W K, et al. Eyeblink recognition improves fatigue prediction from single-channel forehead EEG in a realistic sustained attention task. Journal of Neural Engineering, 2020, 17(3): 036015.
|
31. |
Maaten L, Hinton G. Visualizing data using t-SNE. Journal of Machine Learning Research, 2008, 9(86): 2579-2605.
|