1. |
The International Diabetes Federation. New estimates indicate that more than 1.3 billion people could be living with diabetes by 2050. (2023-06-26) [2024-03-07]. https://idf.org/news/gbd-estimates-2021/.
|
2. |
张惠蓉, 夏英杰. 视网膜静脉阻塞患者视力预后相关因素分析. 中华眼科杂志, 2002, 38(2): 37-41.
|
3. |
Priya R, Aruna P. Diagnosis of diabetic retinopathy using machine learning techniques. J Soft Comput, 2013(4): 563-575.
|
4. |
Lachure J, Deorankar A V, Lachure S, et al. Diabetic retinopathy using morphological operations and machine learning// 2015 IEEE International Advance Computing Conference (IACC). Banglore: IEEE, 2015: 617-622.
|
5. |
Mohammadian S, Karsaz A, Roshan Y M. A comparative analysis of classification algorithms in diabetic retinopathy screening// 2017 International Conference on Computer and Knowledge Engineering (ICCKE). SiChuan: IEEE, 2017: 84-89.
|
6. |
蔡轶珩, 高旭蓉, 邱长炎, 等. 一种混合特征高效融合的视网膜血管分割方法. 电子与信息学报, 2017, 39(8): 1956-1963.
|
7. |
Farag M M, Fouad M, Abdel-Hamid A T. Automatic severity classification of diabetic retinopathy based on DenseNet and convolutional block attention module. IEEE Access, 2022, 10(3): 38299-38308.
|
8. |
Gangwar A K, Ravi V. Diabetic retinopathy detection using transfer learning and deep learning// Evolution in Computational Intelligence: 2021 Frontiers in Intelligent Computing: Theory and Applications (FICTA). Singapore: Springer, 2021: 679-689.
|
9. |
Khan Z, Khan F G, Khan A, et al. Diabetic retinopathy detection using VGG-NIN a deep learning architecture. IEEE Access, 2021, 9(3): 61408-61416.
|
10. |
Kalyani G, Janakiramaiah B, Karuna A, et al. Diabetic retinopathy detection and classification using capsule networks. Complex Intell Syst, 2023, 9: 2651-2664.
|
11. |
Huang K Q, Wang Q, Wu Z Y. Natural color image enhancement and evaluation algorithm based on human visual system. Comput Vis Image Und, 2006, 103(1): 52-63.
|
12. |
Graham B. Kaggle diabetic retinopathy detection competition report. (2015-8-16) [2024-03-07]. https://www.kaggle.com/c/ diabetic-retinopathy-detection.
|
13. |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition// 2016 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
14. |
Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module// 2018 Proceedings of the European Conference on Computer Vision (ECCV). Munich: Springer, 2018: 3-19.
|
15. |
Si Z, Fu D, Liu Y, et al. Hard exudate segmentation in retinal image with attention mechanism. IET Image Processing, 2021, 15(3): 587-597.
|
16. |
Gao S H, Cheng M M, Zhao K, et al. Res2Net: A new multi-sclae backbone architecture. IEEE Trans Pattern Anal Mach Intell, 2019, 43(2): 652-662.
|
17. |
Asia Pacific Tele-Ophthalmology Society. APTOS 2019 blindness detection. (2019-6-29) [2024-03-07]. https://www.kaggle.com/c/aptos2019-blindness-detection/overview.
|
18. |
Wu L, Fernandez-Loaiza P, Sauma J, et al. Classification of diabetic retinopathy and diabetic macular edema. World J Diabetes, 2013, 4(6): 290-294.
|
19. |
Ma X, Guo J, Chen Q, et al. Attention meets normalization and beyond// 2020 IEEE International Conference on Multimedia and Expo (ICME). London: IEEE, 2020: 1-6.
|
20. |
Hu J, Shen L, Sun G. Squeeze-and-excitation networks// 2018 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141.
|
21. |
Wang Q, Wu B, Zhu P, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks// 2020 Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11534-11542.
|
22. |
Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition// 1998 IEEE International Conference on Acoustics Speech and Signal Processing. Seattle: IEEE, 1998: 2278-2324.
|
23. |
Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks// 2017 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: IEEE, 2017: 4700-4708.
|
24. |
Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions// 2015 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Massachusetts: IEEE, 2015: 1-9.
|
25. |
Haque A, Sutradhar I, Rahman M, et al. Convolutional nets for diabetic retinopathy screening in Bangladeshi patients. ArXiv e-prints, 2021, 21(8): 1-8.
|
26. |
郑雯, 沈琪浩, 任佳. 基于Improved DR-Net算法的糖尿病视网膜病变识别与分级. 光学学报, 2021, 41(22): 72-83.
|
27. |
Lu Z, Miao J, Dong J, et al. Automatic multilabel classification of multiple fundus diseases based on convolutional neural network with squeeze-and-excitation attention. Transl Vis Sci Technol, 2023, 12(1): 22-30.
|