1. |
Cui Qianqian, Liu Tianqing, Li Xiangqin, et al. Nanopillared polycarbonate surfaces having variable feature parameters as bactericidal coatings. ACS Appl Nano Mater, 2020, 3(5): 4599-4609..
|
2. |
Ivanova E P, Linklater D P, Werner M, et al. The multi-faceted mechano-bactericidal mechanism of nanostructured surfaces. PNAS, 2020, 117(23): 12598-12605..
|
3. |
Linklater D P, Saita S, Murata T, et al. Nanopillar polymer films as antibacterial packaging materials. ACS Appl Nano Mater, 2022, 5(2): 2578-2591..
|
4. |
Velic A, Hasan J, Li Zhiyong, et al. Mechanics of bacterial interaction and death on nanopatterned surfaces. Biophys J, 2021, 120(2): 217-231..
|
5. |
Lohmann S C, Tripathy A, Milionis A, et al. Effect of flexibility and size of nanofabricated topographies on the mechanobactericidal efficacy of polymeric surfaces. ACS Appl Bio Mater, 2022, 5(4): 1564-1575..
|
6. |
Valiei A, Bryche J F, Canva M, et al. Effects of surface topography and cellular biomechanics on nanopillar-induced bactericidal activity. ACS Appl Mater Interfaces, 2024, 16(8): 9614-9625..
|
7. |
Xie Yuan, Qu Xi, Li Jinyang, et al. Ultrafast physical bacterial inactivation and photocatalytic self-cleaning of ZnO nanoarrays for rapid and sustainable bactericidal applications. Sci Total Environt, 2020, 738: 139714..
|
8. |
Catley T E, Corrigan R M, Parnell A J. Designing effective antimicrobial nanostructured surfaces: highlighting the lack of consensus in the literature. ACS Omega, 2023, 8(17): 14873-14883..
|
9. |
Hayles A, Bright R, Nguyen N H, et al. Vancomycin tolerance of adherent Staphylococcus aureus is impeded by nanospike-induced physiological changes. NPJ Biofilms Microbiomes, 2023, 9(1): 1-11..
|
10. |
Pirouz A, Papakonstantinou I, Michalska M. Antimicrobial mechanisms of nanopatterned surfaces—a developing story. Front Chem, 2024, 12: 1354755..
|
11. |
Valiei A, Lin N, McKay G, et al. Surface wettability is a key feature in the mechano-bactericidal activity of nanopillars. ACS Appl Mater Interfaces, 2022, 14(24): 27564-27574..
|
12. |
Li Wenlong, Thian E S, Wang Miao, et al. Surface design for antibacterial materials: from fundamentals to advanced strategies. Adv Sci, 2021, 8(19): 2100368..
|
13. |
Patil D, Overland M, Stoller M, et al. Bioinspired nanostructured bactericidal surfaces. Curr Opin Chem Eng, 2021, 34: 100741..
|
14. |
Ivanova E P, Hasan J, Webb H K, et al. Natural bactericidal surfaces: mechanical rupture of pseudomonas aeruginosa cells by cicada wings. Small, 2012, 8(16): 2489-2494..
|
15. |
Hasan J, Webb H K, Truong V K, et al. Selective bactericidal activity of nanopatterned superhydrophobic cicada Psaltoda claripennis wing surfaces. Appl Microbiol Biotechnol, 2013, 97(20): 9257-9262..
|
16. |
Silhavy T J, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harb Perspect Biol, 2010, 2(5): a000414..
|
17. |
Mainwaring D E, Nguyen S H, Webb H, et al. The nature of inherent bactericidal activity: insights from the nanotopology of three species of dragonfly. Nanoscale, 2016, 8(12): 6527-6534..
|
18. |
Ramírez-Puebla S T, Weigel B L, Jack L, et al. Spatial organization of the kelp microbiome at micron scales. Microbiome, 2022, 10(1): 52..
|
19. |
Zhao Lidan, Liu Tianqing, Li Xiangqin, et al. Low-temperature hydrothermal synthesis of novel 3D hybrid nanostructures on titanium surface with mechano-bactericidal performance. ACS Biomater Sci Eng, 2021, 7(6): 2268-2278..
|
20. |
Bhadra C M, Khanh T V, Pham V T. H, et al. Antibacterial titanium nano-patterned arrays inspired by dragonfly wings. Sci Rep, 2015, 5(1): 16817..
|
21. |
Jaggessar A, Senevirathne S W M A I, Velic A, et al. Antibacterial activity of 3D versus 2D TiO2 nanostructured surfaces to investigate curvature and orientation effects. Curr Opin Biomed Eng, 2022, 23: 100404..
|
22. |
Roy A, Chatterjee K. Bactericidal anisotropic nanostructures on titanium fabricated by maskless dry etching. ACS Appl Nano Mater, 2022, 5(3): 4447-4461..
|
23. |
Patil D, Golia V, Overland M, et al. Mechanobactericidal nanotopography on nitrile surfaces toward antimicrobial protective gear. ACS Macro Lett, 2023, 12(2): 227-233..
|
24. |
Roy A, Patil D, Yarlagadda P K D V, et al. Cooperative stiffening of flexible high aspect ratio nanostructures impart mechanobactericidal activity to soft substrates. J Colloid Interface Sci, 2023, 652: 2127-2138..
|
25. |
Linklater D P, De Volder M, Baulin V A, et al. High aspect ratio nanostructures kill bacteria via storage and release of mechanical energy. ACS Nano, 2018, 12(7): 6657-6667..
|
26. |
Yick S, Mai-Prochnow A, Levchenko I, et al. The effects of plasma treatment on bacterial biofilm formation on vertically-aligned carbon nanotube arrays. RSC Adv, 2015, 5(7): 5142-5148..
|
27. |
郭逦达, 张增光, 白安琪, 等. 电化学法制备 Ga 掺杂 ZnO 纳米柱阵列及其性能的研究. 太阳能, 2022(4): 87-92..
|
28. |
Quilis N G, Hageneder S, Fossati S, et al. UV-laser interference lithography for local functionalization of plasmonic nanostructures with responsive hydrogel. J Phys Chem C, 2020, 124(5): 3297-3305..
|
29. |
Shimizu Y. Laser interference lithography for fabrication of planar scale gratings for optical metrology. Nanomanufacturing Metrol, 2021, 4(1): 3-27..
|
30. |
Liu Ri, Cao Liang, Liu Dongdong, et al. Laser interference lithography—a method for the fabrication of controlled periodic structures. Nanomaterials, 2023, 13(12): 1818..
|
31. |
Lee W, Jin M K, Yoo W C, et al. Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability. Langmuir, 2004, 20(18): 7665-7669..
|
32. |
Zhang Xin, Zhang Jiteng, Han Xiaoli, et al. A photothermal therapy enhanced mechano-bactericidal hybrid nanostructured surface. J Colloid Interface Sci, 2023, 645: 380-390..
|
33. |
Zhao Xingyu, Xu Zhihao, Wei Zhouxia, et al. Nature-inspired mechano-bactericidal nanostructured surfaces with photothermally enhanced antibacterial performances. Prog Org Coat, 2023, 182: 107599..
|
34. |
Liu Ziting, Yi Yaozhen, Wang Shujin, et al. Bio-inspired self-adaptive nanocomposite array: from non-antibiotic antibacterial actions to cell proliferation. ACS Nano, 2022, 16(10): 16549-16562..
|
35. |
Śliwa A, Mikuła J, Gołombek K, et al. Prediction of the properties of PVD/CVD coatings with the use of FEM analysis. Appl Surf Sci, 2016, 388: 281-287..
|
36. |
蒋如剑. 仿生微纳结构表面设计制备及抗菌性能研究. 长春: 吉林大学, 2021..
|
37. |
Bandara C D, Singh S, Afara I O, et al. Bactericidal effects of natural nanotopography of dragonfly wing on escherichia coli. ACS Appl Mater Interfaces, 2017, 9(8): 6746-6760..
|
38. |
Köller M, Ziegler N, Sengstock C, et al. Bacterial cell division is involved in the damage of gram-negative bacteria on a nano-pillar titanium surface. Biomedical Phys Eng Express, 2018, 4(5): 055002..
|
39. |
Zhao Shuo, Li Zheyu, Linklater D P, et al. Programmed death of injured pseudomonas aeruginosa on mechano-bactericidal surfaces. Nano Lett, 2022, 22(3): 1129-1137..
|
40. |
Le P H, Linklater D P, Aburto-Medina A, et al. Apoptosis of multi-drug resistant candida species on microstructured titanium surfaces. Adv Mater Interfaces, 2023, 10(34): 2300314..
|
41. |
Jenkins J, Mantell J, Neal C, et al. Antibacterial effects of nanopillar surfaces are mediated by cell impedance, penetration and induction of oxidative stress. Nat Commun, 2020, 11(1): 1626..
|
42. |
Pogodin S, Hasan J, Baulin V A, et al. Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces. Biophys J, 2013, 104(4): 835-840..
|
43. |
Xue Fudong, Liu Junjie, Guo Longfang, et al. Theoretical study on the bactericidal nature of nanopatterned surfaces. J Theor Biol, 2015, 385: 1-7..
|
44. |
Li Xinlei. Bactericidal mechanism of nanopatterned surfaces. Phys Chem Chem Phys, 2015, 18(2): 1311-1316..
|
45. |
Senevirathne S W M A I, Hasan J, Mathew A, et al. Bactericidal efficiency of micro- and nanostructured surfaces: a critical perspective. RSC Adv, 2021, 11(3): 1883-1900..
|
46. |
Valiei A, Lin N, Bryche J F, et al. Hydrophilic mechano-bactericidal nanopillars require external forces to rapidly kill bacteria. Nano Lett, 2020, 20(8): 5720-5727..
|
47. |
刘丽, 魏强. 细菌活性检测方法研究进展及其应用探讨. 疾病监测, 2023, 38(12): 1519-1525..
|
48. |
Wang Ziyue, Sheng Lina, Yang Xingxing, et al. Natural biomass-derived carbon dots as potent antimicrobial agents against multidrug-resistant bacteria and their biofilms. Sustain Mater Technol, 2023, 36: e00584..
|
49. |
Zhao Zihao, Matsushita Y, Ogawa N, et al. Bactericidal performance of nanostructures resin surfaces: nanopillars versus nanocones. ACS Appl Nano Mater, 2024, 7(12): 14040-14049..
|
50. |
Viela F, Ortega I V, Hernández J J, et al. Real-time imaging of the mechanobactericidal action of colloidal nanomaterials and nanostructured topographies. Small Sci, 2023, 3(5): 2300002..
|
51. |
Wada M, Nomura T. Direct measurement of adhesion force between a yeast cell and a lactic acid bacterium cell with atomic force microscopy. J Biosci Bioeng, 2022, 133(2): 155-160..
|
52. |
de Sousa K M, Linklater D P, Baulin V A, et al. Understanding the influence of serum proteins adsorption on the mechano-bactericidal efficacy and immunomodulation of nanostructured titanium. Adv Mater Interfaces, 2024, 11(17): 2301021..
|
53. |
de Sousa K M, Linklater D P, Murdoch B J, et al. Modulation of MG-63 osteogenic response on mechano-bactericidal micronanostructured titanium surfaces. ACS Appl Bio Mater, 2023, 6(3): 1054-1070..
|
54. |
Yi Yaozhen, Jiang Rujian, Liu Ziting, et al. Bioinspired nanopillar surface for switchable mechano-bactericidal and releasing actions. J Hazard Mater, 2022, 432: 128685..
|
55. |
Liu Ziting, Yi Yaozhen, Song Lingjie, et al. Biocompatible mechano-bactericidal nanopatterned surfaces with salt-responsive bacterial release. Acta Biomater, 2022, 141: 198-208..
|