1. |
Zhao Z, Chen X, Dowbaj A M, et al. Organoids. Nat Rev Methods Primers, 2022, 2: 94.
|
2. |
Du X, Chen Z, Li Q, et al. Organoids revealed: morphological analysis of the profound next generation in-vitro model with artificial intelligence. Biodes Manuf, 2023, 6(3): 319-339.
|
3. |
Han Y, Duan X, Yang L, et al. Identification of SARS-CoV-2 inhibitors using lung and colonic organoids. Nature, 2021, 589(7841): 270-275.
|
4. |
Kanton S, Boyle M J, He Z, et al. Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature, 2019, 574(7778): 418-422.
|
5. |
Durkee M S, Abraham R, Clark M R, et al. Artificial intelligence and cellular segmentation in tissue microscopy images. Am J Pathol, 2021, 191(10): 1693-1701.
|
6. |
Bai L, Wu Y, Li G, et al. AI-enabled organoids: construction, analysis, and application. Bioact Mater, 2024, 31: 525-548.
|
7. |
Kegeles E, Naumov A, Karpulevich E A, et al. Convolutional neural networks can predict retinal differentiation in retinal organoids. Front Cell Neurosci, 2020, 14: 171.
|
8. |
Bian X, Li G, Wang C, et al. OrgaNet: a deep learning approach for automated evaluation of organoids viability in drug screening//Bioinformatics Research and Applications: 17th International Symposium, Shenzhen, China: ISBRA, 2021: 411-423.
|
9. |
Powell R T, Moussalli M J, Guo L, et al. deepOrganoid: A brightfield cell viability model for screening matrix-embedded organoids. SLAS Discov, 2022, 27(3): 175-184.
|
10. |
Abdul L, Xu J, Sotra A, et al. D-CryptO: deep learning-based analysis of colon organoid morphology from brightfield images. Lab Chip, 2022, 22(21): 4118-4128.
|
11. |
Okamoto T, Natsume Y, Doi M, et al. Integration of human inspection and artificial intelligence-based morphological typing of patient-derived organoids reveals interpatient heterogeneity of colorectal cancer. Cancer Sci, 2022, 113(8): 2693-2703.
|
12. |
Kassis T, Hernandez-Gordillo V, Langer R, et al. OrgaQuant: human intestinal organoid localization and quantification using deep convolutional neural networks. Sci Rep, 2019, 9(1): 12479.
|
13. |
Bremer J P, Baumdick M, Knorr M S, et al. GOAT: deep learning-enhanced generalized organoid annotation tool. BioRxiv, 2022. DOI: 10.1101/2022.09.06.506648.
|
14. |
Abdul L, Rajasekar S, Lin D S Y, et al. Deep-LUMEN assay-human lung epithelial spheroid classification from brightfield images using deep learning. Lab Chip, 2020, 20(24): 4623-4631.
|
15. |
Domènech-Moreno E, Brandt A, Lemmetyinen TT, et al. Tellu-an object-detector algorithm for automatic classification of intestinal organoids. Dis Model Mech, 2023, 16(3): dmm049756.
|
16. |
Yang R, Du Y, Kwan W, et al. A quick and reliable image-based AI algorithm for evaluating cellular senescence of gastric organoids. Cancer Biol Med, 2023, 20(7): 519-536.
|
17. |
Leng B, Jiang H, Wang B, et al. Deep-Orga: an improved deep learning-based lightweight model for intestinal organoid detection. Comput Biol Med, 2024, 169: 107847.
|
18. |
戚枫源, 邱敏, 魏国辉. 基于深度学习的甲状腺疾病超声图像诊断研究综述. 生物医学工程学杂志, 2023, 40(5): 1027-1032.
|
19. |
Wang X, Wu C, Zhang S, et al. A novel deep learning segmentation model for organoid-based drug screening. Front Pharmacol, 2022, 13: 1080273.
|
20. |
Zhang S, Li L, Yu P, et al. A deep learning model for drug screening and evaluation in bladder cancer organoids. Front Oncol, 2023, 13: 1064548.
|
21. |
Park T, Kim T K, Han Y D, et al. Development of a deep learning based image processing tool for enhanced organoid analysis. Sci Rep, 2023, 13(1): 19841.
|
22. |
Brémond Martin C, Simon Chane C, Clouchoux C, et al. Mu-Net a light architecture for small dataset segmentation of brain organoid bright-field images. Biomedicines, 2023, 11(10): 2687.
|
23. |
Borten M A, Bajikar S S, Sasaki N, et al. Automated brightfield morphometry of 3D organoid populations by OrganoSeg. Sci Rep, 2018, 8(1): 5319.
|
24. |
Chen Z, Ma N, Sun X, et al. Automated evaluation of tumor spheroid behavior in 3D culture using deep learning-based recognition. Biomaterials, 2021, 272: 120770.
|
25. |
Winkelmaier G, Parvin B. An enhanced loss function simplifies the deep learning model for characterizing the 3D organoid models. Bioinformatics, 2021, 37(18): 3084-3085.
|
26. |
de Medeiros G, Ortiz R, Strnad P, et al. Multiscale light-sheet organoid imaging framework. Nat Commun, 2022, 13(1): 4864.
|
27. |
Deininger L, Jung-Klawitter S, Mikut R, et al. An AI-based segmentation and analysis pipeline for high-field MR monitoring of cerebral organoids. Sci Rep, 2023, 13(1): 21231.
|
28. |
Bian X, Li G, Wang C, et al. A deep learning model for detection and tracking in high-throughput images of organoid. Comput Biol Med, 2021, 134: 104490.
|
29. |
Larsen B M, Kannan M, Langer L F, et al. A pan-cancer organoid platform for precision medicine. Cell Rep, 2021, 36(4): 109429.
|
30. |
Kok R N U, Hebert L, Huelsz-Prince G, et al. OrganoidTracker: efficient cell tracking using machine learning and manual error correction. PLoS One, 2020, 15(10): e0240802.
|
31. |
Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation//Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany: MICCAI, 2015: 234-241.
|
32. |
Matthews J M, Schuster B, Kashaf S S, et al. OrganoID: A versatile deep learning platform for tracking and analysis of single-organoid dynamics. PLoS Comput Biol, 2022, 18(11): e1010584.
|
33. |
Hradecka L, Wiesner D, Sumbal J, et al. Segmentation and tracking of mammary epithelial organoids in brightfield microscopy. IEEE Trans Med Imaging, 2023, 42(1): 281-290.
|
34. |
Du X, Cui W, Song J, et al. Sketch the organoids from birth to death-development of an intelligent orgatracker system for multi-dimensional organoid analysis and recreation. BioRxiv, 2022. DOI: 10.1101/2022.12.11.519947.
|
35. |
Zheng X, Betjes M A, Ender P, et al. Organoid cell fate dynamics in space and time. Sci Adv, 2023, 9(33): eadd6480.
|
36. |
Marcus G F. Deep learning: a critical appraisal. ArXiv Preprint, 2018, Arxiv: 1801.00631.
|
37. |
Li X, Xiong H, Li X, et al. Interpretable deep learning: interpretation, interpretability, trustworthiness, and beyond. Knowl Inf Syst, 2022, 64: 3197-3234.
|
38. |
唐江平, 周晓飞, 贺鑫, 等. 基于深度学习的新型冠状病毒肺炎诊断研究综述. 计算机工程, 2021, 47(5): 1-15.
|
39. |
Park K, Lee J Y, Lee S Y, et al. Deep learning predicts the differentiation of kidney organoids derived from human induced pluripotent stem cells. Kidney Res Clin Pract, 2023, 42(1): 75-85.
|
40. |
Brémond-Martin C, Simon-Chane C, Clouchoux C, et al. Brain organoid data synthesis and evaluation. Front Neurosci, 2023, 17: 1220172.
|
41. |
Beghin A, Grenci G, Sahni G, et al. Automated high-speed 3D imaging of organoid cultures with multi-scale phenotypic quantification. Nat Methods, 2022, 19(7): 881-892.
|