1. |
Baltrusaitis T, Ahuja C, Morency L P. Multimodal machine learning: a survey and taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(2): 423-443.
|
2. |
Afouras T, Chung J S, Senior A, et al. Deep audio-visual speech recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(12): 8717-8727.
|
3. |
陈杰, 马静, 李晓峰, 等. 基于DR-Transformer模型的多模态情感识别研究. 情报科学, 2022, 40(3): 117-125.
|
4. |
徐瑞麟, 耿伯英, 刘树衎. 多模态公文的结构知识抽取与组织研究. 系统工程与电子技术, 2022, 44(7): 2241-2250.
|
5. |
Zhou S K, Greenspan H, Davatzikos C, et al. A review of deep learning in medical imaging: imaging traits, technology trends, case studies with progress highlights, and future promises. Proc IEEE Inst Electr Electron Eng, 2021, 109(5): 820-838.
|
6. |
Chen H, Lundberg S M, Erion G, et al. Forecasting adverse surgical events using self-supervised transfer learning for physiological signals. npj Digital Medicine, 2021, 4: 167.
|
7. |
Huang S C, Pareek A, Seyyedi S, et al. Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines. npj Digital Medicine, 2020, 3: 136.
|
8. |
Zhang D, Yin C, Zeng J, et al. Combining structured and unstructured data for predictive models: a deep learning approach. BMC Medical Informatics and Decision Making, 2020, 20(1): 280.
|
9. |
Ramachandram D, Taylor G W. Deep multimodal learning: a survey on recent advances and trends. IEEE Signal Processing Magazine, 2017, 34(6): 96-108.
|
10. |
Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16×16 words: transformers for image recognition at scale. arXiv preprint, 2010. DOI: 10.48550/arXiv.2010.11929.
|
11. |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. arXiv preprint, 2017. DOI: 10.48550/arXiv.1706.03762.
|
12. |
Brown T B, Mann B, Ryder N, et al. Language models are few-shot learners. arXiv preprint, 2020. DOI: 10.48550/arXiv.2005.14165.
|
13. |
Meng Y, Speier W, Ong M K, et al. Bidirectional representation learning from transformers using multimodal electronic health record data to predict depression. IEEE Journal of Biomedical and Health Informatics, 2021, 25(8): 3121-3129.
|
14. |
倪炯, 王培军. 医学影像人工智能的现状与未来. 中华医学杂志, 2021, 101(7): 455-457.
|
15. |
Qiu S, Miller M I, Joshi P S, et al. Multimodal deep learning for Alzheimer’s disease dementia assessment. Nature Communications, 2022, 13: 3404.
|
16. |
Prokhorenkova L, Gusev G, Vorobev A, et al. CatBoost: unbiased boosting with categorical features//Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montréal: Neural Information Processing Systems Foundation, 2018: 6639 - 6649.
|
17. |
Barros V, Tlusty T, Barkan E, et al. Virtual biopsy by using artificial intelligence-based multimodal modeling of binational mammography data. Radiology, 2022, 306(3): e220027.
|
18. |
Chen T, Guestrin C. XGBoost: a scalable tree boosting system//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: SIGKDD , 2016: 785-794.
|
19. |
Mei X, Lee H C, Diao K Y, et al. Artificial intelligence-enabled rapid diagnosis of patients with COVID-19. Nature Medicine, 2020, 26: 1224-1228.
|
20. |
Khader F, Müller-Franzes G, Wang T, et al. Multimodal deep learning for integrating chest radiographs and clinical parameters: a case for transformers. Radiology, 2023, 309(1): e230806.
|
21. |
Silva J F, Matos S. Modelling patient trajectories using multimodal information. Journal of Biomedical Informatics, 2022, 134: 104195.
|
22. |
Huang K, Altosaar J, Ranganath R. ClinicalBERT: modeling clinical notes and predicting hospital readmission. arXiv preprint, 2020. DOI: 10.48550/arXiv.1904.05342.
|
23. |
Liu F, Shareghi E, Meng Z, et al. Self-alignment pretraining for biomedical entity representations//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, 2021: 4228-4238.
|
24. |
Liu S, Wang X, Hou Y, et al. Multimodal data matters: language model pre-training over structured and unstructured electronic health records. IEEE Journal of Biomedical and Health Informatics, 2023, 27: 504-514.
|
25. |
Lyu W, Dong X, Wong R, et al. A multimodal transformer: fusing clinical notes with structured EHR data for interpretable in-hospital mortality prediction//American Medical Informatics Association Annual Symposium, New Orleans: American Medical Informatics Association, 2022: 719-728.
|
26. |
Xu Y, Biswal S, Deshpande S R, et al. RAIM: recurrent attentive and intensive model of multimodal patient monitoring data//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London: ACM, 2018: 2565-2573.
|
27. |
Feng Y, University T, Xu Z, et al. DCMN: double core memory network for patient outcome prediction with multimodal data//IEEE International Conference on Data Mining, Beijing: IEEE Computer Society, 2019: 200-209.
|
28. |
Kim H B, Nguyen H T, Jin Q, et al. Computational signatures for post-cardiac arrest trajectory prediction: importance of early physiological time series. Anaesthesia Critical Care & Pain Medicine, 2022, 41(1): 101015.
|
29. |
Hernandez L, Kim R, Tokcan N, et al. Multimodal tensor-based method for integrative and continuous patient monitoring during postoperative cardiac care. Artificial Intelligence in Medicine, 2021, 113: 102032.
|
30. |
Mathis M R, Engoren M C, Williams A M, et al. Prediction of postoperative deterioration in cardiac surgery patients using electronic health record and physiologic waveform data. Anesthesiology, 2022, 137(5): 586-601.
|
31. |
Soenksen L R, Ma Y, Zeng C, et al. Integrated multimodal artificial intelligence framework for healthcare applications. npj Digital Medicine, 2022, 5: 149.
|
32. |
Golovanevsky M, Eickhoff C, Singh R. Multimodal attention-based deep learning for Alzheimer’s disease diagnosis. Journal of the American Medical Informatics Association, 2022, 29(12): 2014-2022.
|
33. |
Abuhmed T, El-Sappagh S, Alonso J M. Robust hybrid deep learning models for Alzheimer’s progression detection. Knowledge-Based Systems, 2021, 213: 106688.
|
34. |
Bahador N, Jokelainen J, Mustola S, et al. Multimodal spatio-temporal-spectral fusion for deep learning applications in physiological time series processing: a case study in monitoring the depth of anesthesia. Information Fusion, 2021, 73: 125-143.
|
35. |
de Hond A A H, Leeuwenberg A M, Hooft L, et al. Guidelines and quality criteria for artificial intelligence-based prediction models in healthcare: a scoping review. npj Digital Medicine, 2022, 5: 2.
|
36. |
Vasey B, Nagendran M, Campbell B, et al. Reporting guideline for the early-stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI. Nature Medicine, 2022, 28: 924-933.
|
37. |
Chen R J, Wang J J, Williamson D F K, et al. Algorithmic fairness in artificial intelligence for medicine and healthcare. Nature Biomedical Engineering, 2023, 7: 719-742.
|