1. |
Coant N, Mkaddem SB, Pedruzzi E, et al. NADPH oxidase 1 modulates WNT and NOTCH1 signaling to control the fate of proliferative progenitor cells in the colon[J]. Mol Cell Biol, 2010, 30(11):2636-2650.
|
2. |
Kajla S, Mondol AS, Nagasawa A, et al. A crucial role for Nox 1 in redox-dependent regulation of Wnt-beta-catenin signaling[J]. FASEB J, 2012, 26(5):2049-2059.
|
3. |
Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis[J]. Nature, 2011, 473(7347):298-307.
|
4. |
Haddad P, Dussault S, Groleau J, et al. Nox2-derived reactive oxygen species contribute to hypercholesterolemia-induced inhibition of neovascularization:effects on endothelial progenitor cells and mature endothelial cells[J]. Atherosclerosis, 2011, 217(2):340-349.
|
5. |
Urao N, Inomata H, Razvi M et al. Role of nox2-based NADPH oxidase in bone marrow and progenitor cell function involved in neovascularization induced by hindlimb ischemia[J]. Circ Res, 2008, 103(2):212-220.
|
6. |
Schroeter MR, Stein S, Heida NM, et al. Leptin promotes the mobilization of vascular progenitor cells and neovascularization by NOX2-mediated activation of MMP9[J]. Cardiovasc Res, 2012, 93(1):170-180.
|
7. |
Lewandowski D, Barroca V, Ducongé F, et al. In vivo cellular imaging pinpoints the role of reactive oxygen species in the early steps of adult hematopoietic reconstitution[J]. Blood, 2010, 115(3):443-452.
|
8. |
Tojo T, Ushio-Fukai M, Yamaoka-Tojo M et al. Role of gp91phox (Nox2)-containing NADPH oxidase in angiogenesis in response to hindlimb ischemia[J]. Circulation, 2005, 111(18):2347-2355.
|
9. |
White CD, Erdemir HH, Sacks DB, et al. IQGAP1 and its binding proteins control diverse biological functions[J]. Cell Signal, 2012, 24(4):826-834.
|
10. |
Sun Z, Li X, Massena S, et al. VEGFR2 induces c-Src signaling and vascular permeability in vivo via the adaptor protein TSAd[J]. J Exp Med, 2012, 209(7):1363-1377.
|
11. |
Mizushima.N, Komatsu M. Autophagy:enovation of cells and tissues[J]. Cell, 2011, 147(4):728-741.
|
12. |
Lee J, Giordano S, Zhang J, et al. Autophagy, mitochondria and oxidative stress:cross-talk and redox signaling[J].Biochem J, 2012, 441(2):523-540.
|
13. |
Wang Q, Liang B, Shirwany NA, et al. 2-deoxy-D-glucose treatment of endothelial cells induces autophagy by reactive oxygen species-mediated activation of the AMP activated protein kinase[J].Plos One, 2011, 6(2):e17234.
|
14. |
Shen W, Tian C, Chen H, et al. Oxidative stress mediates chemerin-induced autophagy in endothelial cells[J]. Free Radic Biol Med, 2012, 55:73-82.
|
15. |
Du J, Teng RJ, Guan T, et al. Role of autophagy in angiogenesis in aortic endothelial cells[J]. Am J Physiol Cell Physiol, 2012, 302(2):C383-C391.
|
16. |
Alexander MR, Owens GK. Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease[J]. Annu Rev Physiol, 2012, 74:13-40.
|
17. |
Moraes JA, Barcellos-de-Souza P, Rodrigues G, et al. Heme modulates smooth muscle cell proliferation and migration via NADPH oxidase:a counter-regulatory role for heme oxygenase system[J]. Atherosclerosis, 2012, 24(2):394-400.
|
18. |
Diebold I, Petry A, Burger M, et al. NOX4 mediates activation of FoxO3a and matrix metalloproteinase-2expression by urotensin-Ⅱ[J]. Mol Biol Cell, 2011, 22(22):4424-4434.
|
19. |
Weber DS, Taniyama Y, Roci P et al.Phosphoinositidedependent kinase 1 and p21-activated protein kinase mediate reactive oxygen species-dependent regulation of plateletderived growth factor-induced smooth muscle cell migration[J]. Circ Res, 2004, 94(9):1219-1226.
|
20. |
Seshiah PN,Weber DS,Rocic P, et al. Angiotensin Ⅱ stimulation of NAD(P)H oxidase activity:upstream mediators[J]. Circ Res, 2002, 91(5):406-413.
|
21. |
Jagadeesha DK,Takapoo M, Banfi B, et al. Nox1 transactivation of epidermal growth factor receptor promotes N-cadherin shedding and smooth muscle cell migration[J]. Cardiovasc Res, 2012, 93(3):406-413.
|
22. |
San Martín A, Griendling KK. Redox control of vascular smooth muscle migration[J]. Antioxid Redox Signal, 2010, 12(5):625-640.
|
23. |
Lee MY,San Martin A, Mehta PK et al.Mechanisms of vascular smooth muscle NADPH oxidase 1(Nox1) contribution to injury-induced neointimal formation[J]. Arterioscler Thromb Vasc Biol, 2009, 29(4):480-487.
|
24. |
Torres RA, Drake DA, Solodushko V, et al. Slingshot isoform-specific regulation of cofilin-mediated vascular smooth muscle cell migration and neointima formation[J]. Arterioscler Thromb Vasc Biol, 2011, 31(11):2424-2431.
|
25. |
Kim JS, Huang TY, Bokoch GM, et al. Reactive oxygen species regulate a slingshot-cofilin activation pathway[J]. Mol Biol Cell, 2009, 20(11):2650-2660.
|
26. |
Maheswaranathan M, Gole HK, Fernandez I, et al. Platelet-derived growth factor (PDGF) regulates Slingshot phosphatase activity via Nox1-dependent auto-dephosphorylation of serine 834 in vascular smooth muscle Cells[J]. J Biol Chem, 2011, 286(41):35430-35437.
|
27. |
Zimmerman MC, Takapoo M, Jagadeesha DK, et al. Activation of NADPH oxidase 1 increases intracellular calcium and migration of smooth muscle cells[J]. Hypertension, 2011, 58(3):446-453.
|
28. |
Schroder K, Zhang M, Benkhoff S, et al. Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase[J]. Circ Res, 2012, 110(9):1217-1225.
|