1. |
Su XW, Broach JR, Connor JR, et al. Genetic heterogeneity of amyotrophic lateral sclerosis: implications for clinical practice and research. Muscle Nerve, 2014, 49(6): 786-803.
|
2. |
Giribaldi F, Milanese M, Bonifacino TA, et al. Group I metabotropic glutamate autoreceptors induce abnormal glutamate exocytosis in a mouse model of amyotrophic lateral sclerosis. Neuropharmacology, 2013, 66(SI): 253-263.
|
3. |
Lautenschläger J, Prell T, Ruhmer J, et al. Overexpression of human mutated G93A SOD1 changes dynamics of the ER mitochondria calcium cycle specifically in mouse embryonic motor neurons. Exp Neurol, 2013, 247: 91-100.
|
4. |
Blasco H, Mavel S, Corcia P, et al. The glutamate hypothesis in ALS: pathophysiology and drug development. Curr Med Chem, 2014, 21(31): 3551-3575.
|
5. |
Panov A, Kubalik N, Zinchenko N, et al. Respiration and ROS production in brain and spinal cord mitochondria of transgenic rats with mutant G93a Cu/Zn-superoxide dismutase gene. Neurobiol Dis, 2011, 44(1): 53-62.
|
6. |
Wood-Allum CA, Barber SC, Kirby J, et al. Impairment of mitochondrial anti-oxidant defence in SOD1-related motor neuron injury and amelioration by ebselen. Brain 2006, 129(Pt 7): 1693-1709.
|
7. |
Federico A, Cardaioli E, Da Pozzo P, et al. Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci, 2012, 322(1/2): 254-262.
|
8. |
Dhaliwal GK, Grewal RP. Mitochondrial DNA deletion mutation levels are elevated in ALS brains. Neuroreport, 2000, 11(11): 2507-2509.
|
9. |
Wiedemann FR, Manfredi G, Mawrin C, et al. Mitochondrial DNA and respiratory chain function in spinal cords of ALS patients. J Neurochem, 2002, 80(4): 616-625.
|
10. |
Takeuchi H, Kobayashi Y, Ishigaki S, et al. Mitochondrial localization of mutant superoxide dismutase 1 triggers caspase-dependent cell death in a cellular model of familial amyotrophic lateral sclerosis. J Biol Chem, 2002, 277(52): 50966-50972.
|
11. |
Pasinelli P, Belford ME, Lennon N, et al. Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria. Neuron, 2004, 43(1): 19-30.
|
12. |
Ferri A, Cozzolino M, Crosio C, et al. T//Proc. Natl, 103. Sci USA, 2006: 13860-13865.
|
13. |
Bannwarth S, Ait-El-Mkadem S, Chaussenot A, et al. A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain, 2014, 137(8): 2329-2345.
|
14. |
Cozzolino M, Rossi S, Mirra A, et al. Mitochondrial dynamism and the pathogenesis of Amyotrophic Lateral Sclerosis. Front Cell Neurosci, 2015, 9: 31.
|
15. |
Dicks N, Gutierrez K, Michalak M, et al. Endoplasmic reticulum stress, genome damage, and cancer. Front Oncol, 2015, 5: 11.
|
16. |
Atkin JD, Farg MA, Walker AK, et al. Endoplasmic reticulum stress and induction of the unfolded protein response in human sporadic amyotrophic lateral sclerosis. Neurobiol Dis, 2008, 30(3): 400-407.
|
17. |
Kikuchi H, Almer G, Yamashita S, et al. A//Proc. Natl, 103. Sci. USA, 2006: 6025-6030.
|
18. |
Nishitoh H, Kadowaki H, Nagai A, et al. ALS-linked mutant SOD1 induces ER stress-and ASK1-dependent motor neuron death by targeting Derlin-1. Genes Dev, 2008, 22(11): 1451-1464.
|
19. |
Jaronen M, Goldsteins G, Koistinaho J. ER stress and unfolded protein response in amyotrophic lateral sclerosis-a controversial role of protein disulphide isomerase. Front Cell Neurosci, 2014, 8: 402.
|
20. |
Arai T, Hasegawa M, Akiyama H, et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun, 2006, 351(3): 602-611.
|
21. |
Rakhit R, Cunningham P, Furtos-Matei A, et al. Oxidation-induced misfolding and aggregation of superoxide dismutase and its implications for amyotrophic lateral sclerosis. J Biol Chem, 2002, 277(49): 47551-47556.
|
22. |
Tortelli R, Ruggieri M, Cortese R, et al. Elevated cerebrospinal fluid neurofilament light levels in patients with amyotrophic lateral sclerosis: a possible marker of disease severity and progression. Eur J Neurol, 2012, 19(12): 1561-1567.
|
23. |
Kim NH, Jeong MS, Choi SY, et al. Oxidative modification of neurofilament-L by the Cu, Zn-superoxide dismutase and Hydrogen peroxide system. Biochimie, 2004, 86(8): 553-559.
|
24. |
Chen H, Qian K, Du ZW, et al. Modeling ALS with iPSCs Reveals that Mutant SOD1 Misregulates Neurofilament Balance in Motor Neurons. Cell Stem Cell, 2014, 14(6): 796-809.
|
25. |
Haidet-Phillips AM, Hester ME, Miranda CJ, et al. Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nat Biotechnol, 2011, 29(9): 824-828.
|
26. |
Lino MM, Schneider C, Caroni P. Accumulation of SOD1 mutants in postnatal motoneurons does not cause motoneuron pathology or motoneuron disease. J Neurosci, 2002, 22(12): 4825-4832.
|
27. |
Clement AM, Nguyen MD, Roberts EA, et al. Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science, 2003, 302(5642): 113-117.
|
28. |
Nagai M, Re DB, Nagata T, et al. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci, 2007, 10(5): 615-622.
|
29. |
Lattante S, Rouleau GA, Kabashi E. TARDBP and FUS mutations associated with amyotrophic lateral sclerosis: summary and update. Hum Mutat, 2013, 34(6): 812-826.
|
30. |
Duan W, Li X, Shi J, et al. Mutant TAR DNA-binding protein-43 induces oxidative injury in motor neuron-like cell. Neuroscience, 2010, 169(4): 1621-1629.
|
31. |
Pokrishevsky E, Grad LI, Yousefi M, et al. Aberrant Localization of FUS and TDP43 is associated with misfolding of SOD1 in amyotrophic lateral sclerosis. PLoS One, 2012, 7(4): e35050.
|
32. |
Kiskinis E, Sandoe J, Williams LA, et al. Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1. Cell Stem Cell, 2014, 14(6): 781-795.
|