1. |
Nyame TT, Chiang HA, Leavitt T, et al. Tissue-engineered skin substitutes. Plast Reconstr Surg, 2015, 136(6): 1379-1388.
|
2. |
Skubis A, Gola J, Sikora B, et al. Impact of antibiotics on the proliferation and differentiation of human adipose-derived mesenchymal stem cells. Int J Mol Sci, 2017, 18(12): 2522.
|
3. |
Naderi N, Combellack EJ, Griffin M, et al. The regenerative role of adipose-derived stem cells (ADSC) in plastic and reconstructive surgery. Int Wound J, 2017, 14(1): 112-124.
|
4. |
Strem BM, Hicok KC, Zhu M, et al. Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med, 2005, 54(3): 132-141.
|
5. |
Brzoska M, Geiger H, Gauer S, et al. Epithelial differentiation of human adipose tissue-derived adult stem cells. Biochem Biophys Res Commun, 2005, 330(1): 142-150.
|
6. |
Long JL, Zuk P, Berke GS, et al. Epithelial differentiation of adipose-derived stem cells for laryngeal tissue engineering. Laryngoscope, 2010, 120(1): 125-131.
|
7. |
龙剑虹, 刘芳芬, 祁敏. 体外诱导骨髓间充质干细胞分化为表皮干细胞. 中南大学学报: 医学版, 2006, 31(6): 866-871.
|
8. |
李薇, 李松泽. HaCaT细胞诱导兔骨髓间充质干细胞表达角蛋白的初步研究. 皮肤性病诊疗学杂志, 2014, 21(2): 104-107.
|
9. |
赵周婷, 胡大海, 陶克, 等. 人脂肪间充质干细胞向表皮细胞表型转化的研究. 中国美容医学, 2014, 23(22): 1899-1903.
|
10. |
Baer PC, Bereiter-Hahn J, Missler C, et al. Conditioned medium from renal tubular epithelial cells initiates differentiation of human mesenchymal stem cells. Cell Prolif, 2009, 42(1): 29-37.
|
11. |
Li H, Xu Y, Fu Q, et al. Effects of multiple agents on epithelial differentiation of rabbit adipose-derived stem cells in 3D culture. Tissue Eng Part A, 2012, 18(17/18): 1760-1770.
|
12. |
da Silva Meirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci, 2006, 119(Pt 11): 2204-2213.
|
13. |
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006, 8(4): 315-317.
|
14. |
Bajek A, Gurtowska N, Olkowska J, et al. Adipose-derived stem cells as a tool in cell-based. Arch Immunol Ther Exp (Warsz), 2016, 64(6):443-454.
|
15. |
Mizuno, H. Adipose-derived stem cells for tissue repair and regeneration: ten years of research and a literature review. J Nippon Med Sch, 2009, 76(2): 56-66.
|
16. |
Sugii S, Kida Y, Kawamura T, et al. Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells. Proc Natl Acad Sci USA, 2010, 107(8): 3558-3563.
|
17. |
Bourin P, Bunnell BA, Casteilla LA, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy, 2013, 15(6): 641-648.
|
18. |
Baglioni S, Francalanci M, Squecco R, et al. Characterization of human adult stem-cell populations isolated from visceral and subcutaneous adipose tissue. FASEB J, 2009, 23(10): 3494-3505.
|
19. |
Vishnubalaji R, Al-Nbaheen M, Kadalmani B, et al. Comparative investigation of the differentiation capability of bone-marrow- and adipose-derived mesenchymal stem cells by qualitative and quantitative analysis. Cell Tissue Res, 2012, 347(2): 419-427.
|
20. |
Ross AC. Cellular metabolism and activation of retinoids: roles of cellular retinoid-binding proteins. FASEB J, 1993, 7(2): 317-327.
|
21. |
Zhang S, Chen X, Hu Y, et al. All-trans retinoic acid modulates Wnt3A-induced osteogenic differentiation of mesenchymal stem cells via activating the PI3K/AKT/GSK3β signalling pathway. Mol Cell Endocrinol, 2016, 422: 243-253.
|
22. |
Ma K, Laco F, Ramakrishna S, et al. Differentiation of bone marrow-derived mesenchymal stem cells into multi-layered epidermis-like cells in 3D organotypic coculture. Biomaterials, 2009, 30(19): 3251-3258.
|
23. |
Moll R, Divo M, Langbein L. The human keratins: biology and pathology. Histochem Cell Biol, 2008, 129(6): 705-733.
|
24. |
Kwon YW, Kwon KS, Moon HE, et al. Insulin-like growth factor-Ⅱ regulates the expression of vascular endothelial growth factor by the human keratinocyte cell line HaCaT. J Invest Dermatol, 2004, 123(1): 152-158.
|
25. |
Pozzi G, Guidi M, Laudicina F, et al. IGF-I stimulates proliferation of spontaneously immortalized human keratinocytes (HACAT) by autocrine/paracrine mechanisms. J Endocrinol Invest, 2004, 27(2): 142-149.
|