1. |
Feng R, Badgeley M, Mocco J, et al. Deep learning guided stroke management: a review of clinical applications. J Neurointerv Surg, 2018, 10(4): 358-362.
|
2. |
Hassabis D, Kumaran D, Summerfield C, et al. Neuroscience-inspired artificial intelligence. Neuron, 2017, 95(2): 245-258.
|
3. |
严舒, 陈娟, 欧阳昭连. 基于 NIH 项目的美国医学人工智能发展态势分析. 中国医疗设备, 2019, 34(12): 101-105, 150.
|
4. |
黄光成, 周良, 石建伟, 等. 机器学习算法在疾病风险预测中的应用与比较. 中国卫生资源, 2020, 23(4): 432-436.
|
5. |
Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw, 2015, 61: 85-117.
|
6. |
Dhakan P, Merrick K, Rañó I, et al. Intrinsic rewards for maintenance, approach, avoidance, and achievement goal types. Front Neurorobot, 2018, 12: 63.
|
7. |
王拥军, 李子孝, 谷鸿秋, 等. 中国卒中报告 2020(中文版)(1). 中国卒中杂志, 2022, 17(5): 433-447.
|
8. |
Chilamkurthy S, Ghosh R, Tanamala S, et al. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet, 2018, 392(10162): 2388-2396.
|
9. |
Titano JJ, Badgeley M, Schefflein J, et al. Automated deep-neural-network surveillance of cranial images for acute neurologic events. Nat Med, 2018, 24(9): 1337-1341.
|
10. |
Claassen J, Doyle K, Matory A, et al. Detection of brain activation in unresponsive patients with acute brain injury. N Engl J Med, 2019, 380(26): 2497-2505.
|
11. |
王霁雯, 林雨, 熊建华, 等. 基于深度学习的自发性脑出血 CT 影像分割算法精准计算病灶体积的应用探讨. 中华放射学杂志, 2019, 53(11): 941-945.
|
12. |
陆言巧, 沈兰, 何奔. 人工智能在心血管疾病的辅助诊疗中的应用. 上海交通大学学报(医学版), 2020, 40(2): 259-262.
|
13. |
丁玲玲, 李子孝, 王拥军. 人工智能临床决策支持系统在脑血管病中的应用. 中国卒中杂志, 2020, 15(3): 290-295.
|
14. |
Weir CJ, Lees KR, MacWalter RS, et al. Cluster-randomized, controlled trial of computer-based decision support for selecting long-term anti-thrombotic therapy after acute ischaemic stroke. QJM, 2003, 96(2): 143-153.
|
15. |
娄昕, 何建风, 马林. 脑血管病医学影像人工智能研究现状与展望. 中华放射学杂志, 2020, 54(5): 389-392.
|
16. |
Li X, Wu M, Sun C, et al. Using machine learning to predict stroke-associated pneumonia in Chinese acute ischaemic stroke patients. Eur J Neurol, 2020, 27(8): 1656-1663.
|
17. |
De Ryck A, Brouns R, Geurden M, et al. Risk factors for poststroke depression: identification of inconsistencies based on a systematic review. J Geriatr Psychiatry Neurol, 2014, 27(3): 147-158.
|
18. |
Schepers V, Post M, Visser-Meily A, et al. Prediction of depressive symptoms up to three years post-stroke. J Rehabil Med, 2009, 41(11): 930-935.
|
19. |
Liu R, Yue Y, Jiang H, et al. A risk prediction model for post-stroke depression in Chinese stroke survivors based on clinical and socio-psychological features. Oncotarget, 2017, 8(38): 62891-62899.
|
20. |
Tung F, Mori G. Deep neural network compression by in-parallel pruning-quantization. IEEE Trans Pattern Anal Mach Intell, 2020, 42(3): 568-579.
|
21. |
Huang G, Liu Z, Pleiss G, et al. Convolutional networks with dense connectivity. IEEE Trans Pattern Anal Mach Intell, 2022, 44(12): 8704-8716.
|
22. |
Heo J, Yoon JG, Park H, et al. Machine learning-based model for prediction of outcomes in acute stroke. Stroke, 2019, 50(5): 1263-1265.
|
23. |
Hilbert A, Ramos LA, van Os HJA, et al. Data-efficient deep learning of radiological image data for outcome prediction after endovascular treatment of patients with acute ischemic stroke. Comput Biol Med, 2019, 115: 103516.
|
24. |
Cheon S, Kim J, Lim J. The use of deep learning to predict stroke patient mortality. Int J Environ Res Public Health, 2019, 16(11): 1876.
|
25. |
Lin WY, Chen CH, Tseng YJ, et al. Predicting post-stroke activities of daily living through a machine learning-based approach on initiating rehabilitation. Int J Med Inform, 2018, 111: 159-164.
|
26. |
Nielsen A, Hansen MB, Tietze A, et al. Prediction of tissue outcome and assessment of treatment effect in acute ischemic stroke using deep learning. Stroke, 2018, 49(6): 1394-1401.
|
27. |
Tekkeşin Aİ. Artificial intelligence in healthcare: past, present and future. Anatol J Cardiol, 2019, 22(Suppl 2): 8-9.
|