1. |
Fonseca AC, Ferro JM. Cryptogenic stroke. Eur J Neurol, 2015, 22(4): 618-623.
|
2. |
Hart RG, Diener HC, Coutts SB, et al. Embolic strokes of undetermined source: the case for a new clinical construct. Lancet Neurol, 2014, 13(4): 429-438.
|
3. |
Saver JL. Clinical practice. Cryptogenic stroke. N Engl J Med, 2016, 374(21): 2065-2074.
|
4. |
Li L, Yiin GS, Geraghty OC, et al. Incidence, outcome, risk factors, and long-term prognosis of cryptogenic transient ischaemic attack and ischaemic stroke: a population-based study. Lancet Neurol, 2015, 14(9): 903-913.
|
5. |
Sanna T, Diener HC, Passman RS, et al. Cryptogenic stroke and underlying atrial fibrillation. N Engl J Med, 2014, 370(26): 2478-2486.
|
6. |
Mojadidi MK, Zaman MO, Elgendy IY, et al. Cryptogenic stroke and patent foramen ovale. J Am Coll Cardiol, 2018, 71(9): 1035-1043.
|
7. |
Bulwa Z, Gupta A. Embolic stroke of undetermined source: the role of the nonstenotic carotid plaque. J Neurol Sci, 2017, 382: 49-52.
|
8. |
Celaj S, Prabhakaran S. Cardioembolic sources in patients with small single subcortical infarcts. Neurologist, 2019, 24(2): 56-58.
|
9. |
Ntaios G, Perlepe K, Lambrou D, et al. Prevalence and overlap of potential embolic sources in patients with embolic stroke of undetermined source. J Am Heart Assoc, 2019, 8(15): e012858.
|
10. |
Yaghi S, Boehme AK, Hazan R, et al. Atrial cardiopathy and cryptogenic stroke: a cross-sectional pilot study. J Stroke Cerebrovasc Dis, 2016, 25(1): 110-114.
|
11. |
Jalini S, Rajalingam R, Nisenbaum R, et al. Atrial cardiopathy in patients with embolic strokes of unknown source and other stroke etiologies. Neurology, 2019, 92(4): e288-e294.
|
12. |
Yaghi S, Liberman AL, Atalay M, et al. Cardiac magnetic resonance imaging: a new tool to identify cardioaortic sources in ischaemic stroke. J Neurol Neurosurg Psychiatry, 2017, 88(1): 31-37.
|
13. |
Fonseca AC, Ferro JM, Almeida AG. Cardiovascular magnetic resonance imaging and its role in the investigation of stroke: an update. J Neurol, 2021.
|
14. |
Harloff A, Dudler P, Frydrychowicz A, et al. Reliability of aortic MRI at 3 Tesla in patients with acute cryptogenic stroke. J Neurol Neurosurg Psychiatry, 2008, 79(5): 540-546.
|
15. |
Zahuranec DB, Mueller GC, Bach DS, et al. Pilot study of cardiac magnetic resonance imaging for detection of embolic source after ischemic stroke. J Stroke Cerebrovasc Dis, 2012, 21(8): 794-800.
|
16. |
Jeudy J, White CS. Cardiac magnetic resonance imaging: techniques and principles. Semin Roentgenol, 2008, 43(3): 173-182.
|
17. |
Lee N, Hyeon T. Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem Soc Rev, 2012, 41(7): 2575-2589.
|
18. |
Lanzer P, Barta C, Botvinick EH, et al. ECG-synchronized cardiac MR imaging: method and evaluation. Radiology, 1985, 155(3): 681-686.
|
19. |
Atalay M. Cardiac magnetic resonance imaging: update. Top Magn Reson Imaging, 2014, 23(1): 1.
|
20. |
Rustemli A, Bhatti TK, Wolff SD. Evaluating cardiac sources of embolic stroke with MRI. Echocardiography, 2007, 24(3): 301-308.
|
21. |
Baher A, Mowla A, Kodali S, et al. Cardiac MRI improves identification of etiology of acute ischemic stroke. Cerebrovasc Dis, 2014, 37(4): 277-284.
|
22. |
Sipola P, Hedman M, Onatsu J, et al. Computed tomography and echocardiography together reveal more high-risk findings than echocardiography alone in the diagnostics of stroke etiology. Cerebrovasc Dis, 2013, 35(6): 521-530.
|
23. |
Yaghi S, Moon YP, Mora-McLaughlin C, et al. Left atrial enlargement and stroke recurrence: the northern Manhattan stroke study. Stroke, 2015, 46(6): 1488-1493.
|
24. |
Quan W, Yang X, Li Y, et al. Left atrial size and risk of recurrent ischemic stroke in cardiogenic cerebral embolism. Brain Behav, 2020, 10(10): e01798.
|
25. |
de Groot NM, Schalij MJ. Imaging modalities for measurements of left atrial volume in patients with atrial fibrillation: what do we choose?. Europace, 2010, 12(6): 766-767.
|
26. |
Lupu S, Mitre A, Dobreanu D. Left atrium function assessment by echocardiography-physiological and clinical implications. Med Ultrason, 2014, 16(2): 152-159.
|
27. |
Shimada YJ, Shiota T. Underestimation of left atrial volume by three-dimensional echocardiography validated by magnetic resonance imaging: a meta-analysis and investigation of the source of bias. Echocardiography, 2012, 29(4): 385-390.
|
28. |
Tan TC, Koutsogeorgis ID, Grapsa J, et al. Left atrium and the imaging of atrial fibrosis: catch it if you can!. Eur J Clin Invest, 2014, 44(9): 872-881.
|
29. |
Oakes RS, Badger TJ, Kholmovski EG, et al. Detection and quantification of left atrial structural remodeling with delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation. Circulation, 2009, 119(13): 1758-1767.
|
30. |
Marrouche NF, Wilber D, Hindricks G, et al. Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: the DECAAF study. JAMA, 2014, 311(5): 498-506.
|
31. |
Mărgulescu AD, Nuñez-Garcia M, Alarcón F, et al. Reproducibility and accuracy of late gadolinium enhancement cardiac magnetic resonance measurements for the detection of left atrial fibrosis in patients undergoing atrial fibrillation ablation procedures. Europace, 2019, 21(5): 724-731.
|
32. |
Tandon K, Tirschwell D, Longstreth WT Jr, et al. Embolic stroke of undetermined source correlates to atrial fibrosis without atrial fibrillation. Neurology, 2019, 93(4): e381-e387.
|
33. |
Daccarett M, Badger TJ, Akoum N, et al. Association of left atrial fibrosis detected by delayed-enhancement magnetic resonance imaging and the risk of stroke in patients with atrial fibrillation. J Am Coll Cardiol, 2011, 57(7): 831-838.
|
34. |
Fonseca AC, Alves P, Inácio N, et al. Patients with undetermined stroke have increased atrial fibrosis: a cardiac magnetic resonance imaging study. Stroke, 2018, 49(3): 734-737.
|
35. |
Kulhari A, Kalra N, Sila C. Noncompaction cardiomyopathy and stroke: case report and literature review. J Stroke Cerebrovasc Dis, 2015, 24(8): e213-e217.
|
36. |
Andreini D, Pontone G, Bogaert J, et al. Long-term prognostic value of cardiac magnetic resonance in left ventricle noncompaction: a prospective multicenter study. J Am Coll Cardiol, 2016, 68(20): 2166-2181.
|
37. |
Salemi VM, Rochitte CE, Shiozaki AA, et al. Late gadolinium enhancement magnetic resonance imaging in the diagnosis and prognosis of endomyocardial fibrosis patients. Circ Cardiovasc Imaging, 2011, 4(3): 304-311.
|
38. |
Fonseca AC, Marto JP, Pimenta D, et al. Undetermined stroke genesis and hidden cardiomyopathies determined by cardiac magnetic resonance. Neurology, 2020, 94(1): e107-e113.
|
39. |
Takasugi J, Yamagami H, Noguchi T, et al. Detection of left ventricular thrombus by cardiac magnetic resonance in embolic stroke of undetermined source. Stroke, 2017, 48(9): 2434-2440.
|
40. |
Yang H, Nassif M, Khairy P, et al. Cardiac diagnostic work-up of ischaemic stroke. Eur Heart J, 2018, 39(20): 1851-1860.
|
41. |
Poli S, Diedler J, Härtig F, et al. Insertable cardiac monitors after cryptogenic stroke--a risk factor based approach to enhance the detection rate for paroxysmal atrial fibrillation. Eur J Neurol, 2016, 23(2): 375-381.
|
42. |
Shibazaki K, Kimura K, Fujii S, et al. Brain natriuretic peptide levels as a predictor for new atrial fibrillation during hospitalization in patients with acute ischemic stroke. Am J Cardiol, 2012, 109(9): 1303-1307.
|
43. |
Fonseca AC, Brito D, Pinho e Melo T, et al. N-terminal pro-brain natriuretic peptide shows diagnostic accuracy for detecting atrial fibrillation in cryptogenic stroke patients. Int J Stroke, 2014, 9(4): 419-425.
|
44. |
Gladstone DJ, Dorian P, Spring M, et al. Atrial premature beats predict atrial fibrillation in cryptogenic stroke: results from the EMBRACE trial. Stroke, 2015, 46(4): 936-941.
|