- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P. R. China;
In recent years, high-resolution magnetic resonance imaging (HRMRI) has become a useful clinical and research tool. HRMRI can be used to observe intracranial vascular wall lesions in vivo, providing more valuable pathophysiological information, and providing guidance for the diagnosis, differential diagnosis and prognosis of intracranial atherosclerosis. For stenotic intracranial atherosclerosis, the morphology of the vessel wall can effectively differentiate various vascular stenosis diseases. Further, plaque composition, vessel wall enhancement, remodel mode provide information of plaque vulnerability. For non-stenotic intracranial atherosclerosis, the location of the plaque can reveal the pathophysiological mechanism. In addition, HRMRI can show the lesion in lenticulostriate artery. Therefore, this article will summarize the clinical application of HRMRI.
Citation: YUAN Weizhuang, XU Weihai. High-resolution magnetic resonance imaging in intracranial atherosclerotic disease. West China Medical Journal, 2021, 36(6): 707-713. doi: 10.7507/1002-0179.202105023 Copy
1. | Xu WH, Li ML, Gao S, et al. In vivo high-resolution MR imaging of symptomatic and asymptomatic middle cerebral artery atherosclerotic stenosis. Atherosclerosis, 2010, 212(2): 507-511. |
2. | CAI J, Hatsukami TS, Ferguson MS, et al. In vivo quantitative measurement of intact fibrous cap and lipid-rich necrotic core size in atherosclerotic carotid plaque: comparison of high-resolution, contrast-enhanced magnetic resonance imaging and histology. Circulation, 2005, 112(22): 3437-3444. |
3. | Yang WQ, Huang B, Liu XT, et al. Reproducibility of high-resolution MRI for the middle cerebral artery plaque at 3T. Eur J Radiol, 2014, 83(1): e49-e55. |
4. | Zhao DL, Li C, Chen XH, et al. Reproducibility of 3.0 T high-resolution magnetic resonance imaging for the identification and quantification of middle cerebral arterial atherosclerotic plaques. J Stroke Cerebrovasc Dis, 2019, 28(7): 1824-1831. |
5. | Mossa-basha M, Watase H, Sun J, et al. Inter-rater and scan-rescan reproducibility of the detection of intracranial atherosclerosis on contrast-enhanced 3D vessel wall MRI. Br J Radiol, 2019, 92(1097): 20180973. |
6. | Yamada K, Song Y, Hippe DS, et al. Quantitative evaluation of high intensity signal on MIP images of carotid atherosclerotic plaques from routine TOF-MRA reveals elevated volumes of intraplaque hemorrhage and lipid rich necrotic core. J Cardiovasc Magn Reson, 2012, 14(1): 81. |
7. | Zavodni AE, Wasserman BA, McClelland RL, et al. Carotid artery plaque morphology and composition in relation to incident cardiovascular events: the Multi-Ethnic Study of Atherosclerosis (MESA). Radiology, 2014, 271(2): 381-389. |
8. | Takaya N, Yuan C, Chu B, et al. Association between carotid plaque characteristics and subsequent ischemic cerebrovascular events: a prospective assessment with MRI--initial results. Stroke, 2006, 37(3): 818-823. |
9. | Underhill H, Yuan C, Yarnykh VL, et al. Predictors of surface disruption with MR imaging in asymptomatic carotid artery stenosis. AJNR Am J Neuroradiol, 2010, 31(3): 487-493. |
10. | Lee YK, Kwak HS, Chung GH, et al. Lipid-rich necrotic core of basilar artery atherosclerotic plaque: contrast-enhanced black blood imaging on vessel wall imaging. Diagnostics (Basel), 2019, 9(3): 69. |
11. | Shi Z, Li J, Zhao M, et al. Quantitative histogram analysis on intracranial atherosclerotic plaques: a high-resolution magnetic resonance imaging study. Stroke, 2020, 51(7): 2161-2169. |
12. | Qiao Y, Zeiler SR, Mirbagheri S, et al. Intracranial plaque enhancement in patients with cerebrovascular events on high-spatial-resolution MR images. Radiology, 2014, 271(2): 534-542. |
13. | Teng Z, Peng W, Zhan Q, et al. An assessment on the incremental value of high-resolution magnetic resonance imaging to identify culprit plaques in atherosclerotic disease of the middle cerebral artery. Eur Radiol, 2016, 26(7): 2206-2214. |
14. | Vakil P, Vranic J, Hurley MC, et al. T1 gadolinium enhancement of intracranial atherosclerotic plaques associated with symptomatic ischemic presentations. AJNR Am J Neuroradiol, 2013, 34(12): 2252-2258. |
15. | Zou XD, Chung YC, Zhang L, et al. Middle cerebral artery atherosclerotic plaques in recent small subcortical infarction: a three-dimensional high-resolution MR study. Biomed Res Int, 2015, 2015: 540217. |
16. | Alexander MD, de Havenon A, Kim SE, et al. Assessment of quantitative methods for enhancement measurement on vessel wall magnetic resonance imaging evaluation of intracranial atherosclerosis. Neuroradiology, 2019, 61(6): 643-650. |
17. | Kwee RM, Qiao Y, Liu L, et al. Temporal course and implications of intracranial atherosclerotic plaque enhancement on high-resolution vessel wall MRI. Neuroradiology, 2019, 61(6): 651-657. |
18. | Subramanian G, Silva J, Silver FL, et al. Risk factors for posterior compared to anterior ischemic stroke: an observational study of the Registry of the Canadian Stroke Network. Neuroepidemiology, 2009, 33(1): 12-16. |
19. | Warfarin-Aspirin Symptomatic Intracranial Disease (WASID) Trial Investigators. Design, progress and challenges of a double-blind trial of warfarin versus aspirin for symptomatic intracranial arterial stenosis. Neuroepidemiology, 2003, 22(2): 106-117. |
20. | Huang J, Jiao S, Song Y, et al. Association between type 2 diabetes mellitus, especially recently uncontrolled glycemia, and intracranial plaque characteristics: a high-resolution magnetic resonance imaging study. J Diabetes Investig, 2020, 11(5): 1278-1284. |
21. | Takano K, Hida K, Kuwabara Y, et al. Intracranial arterial wall enhancement using gadolinium-enhanced 3D black-blood T1-weighted imaging. Eur J Radiol, 2017, 86: 13-19. |
22. | Kim JM, Jung KH, Sohn CH, et al. Intracranial plaque enhancement from high resolution vessel wall magnetic resonance imaging predicts stroke recurrence. Int J Stroke, 2016, 11(2): 171-179. |
23. | Guggenberger K, Krafft AJ, Ludwig U, et al. High-resolution compressed-sensing T1 black-blood MRI: a new multipurpose sequence in vascular neuroimaging?. Clin Neuroradiol, 2021, 31(1): 207-216. |
24. | Gupta A, Baradaran H, Al-Dasuqi K, et al. Gadolinium enhancement in intracranial atherosclerotic plaque and ischemic stroke: a systematic review and meta-analysis. J Am Heart Assoc, 2016, 5(8): e003815. |
25. | Jia L, Zhang N, Kukun H, et al. Three-dimensional intra- and extracranial arterial vessel wall joint imaging in patients with cerebrovascular disease. Eur J Radiol, 2020, 126: 108921. |
26. | Wang E, Shao S, Li S, et al. A high-resolution MRI study of the relationship between plaque enhancement and ischemic stroke events in patients with intracranial atherosclerotic stenosis. Front Neurol, 2018, 9: 1154. |
27. | Huang J, Jiao S, Zhao X, et al. Characteristics of patients with enhancing intracranial atherosclerosis and association between plaque enhancement and recent cerebrovascular ischemic events: a high-resolution magnetic resonance imaging study. Acta Radiol, 2019, 60(10): 1301-1307. |
28. | Ryu CW, Jahng GH, Shin HS. Gadolinium enhancement of atherosclerotic plaque in the middle cerebral artery: relation to symptoms and degree of stenosis. AJNR Am J Neuroradiol, 2014, 35(12): 2306-2310. |
29. | Kern KC, Liebeskind DS. Vessel wall imaging of cerebrovascular disorders. Curr Treat Options Cardiovasc Med, 2019, 21(11): 65. |
30. | Lu X, Li C, Qu C, et al. A high resolution MRI study of the relationship between plaque enhancement and perforator stroke after stenting for symptomatic vertebrobasilar artery stenosis. J Stroke Cerebrovasc Dis, 2021, 30(3): 105558. |
31. | Zhu C, Tian X, Degnan AJ, et al. Clinical significance of intraplaque hemorrhage in low- and high-grade basilar artery stenosis on high-resolution MRI. AJNR Am J Neuroradiol, 2018, 39(7): 1286-1292. |
32. | Yu JH, Kwak HS, Chung GH, et al. Association of intraplaque hemorrhage and acute infarction in patients with basilar artery plaque. Stroke, 2015, 46(10): 2768-2772. |
33. | Liu Q, Huang J, Degnan AJ, et al. Comparison of high-resolution MRI with CT angiography and digital subtraction angiography for the evaluation of middle cerebral artery atherosclerotic steno-occlusive disease. Int J Cardiovasc Imaging, 2013, 29(7): 1491-1498. |
34. | Bai X, Lv P, Liu K, et al. 3D black-blood luminal angiography derived from high-resolution MR vessel wall imaging in detecting MCA stenosis: a preliminary study. AJNR Am J Neuroradiol, 2018, 39(10): 1827-1832. |
35. | Lee N, Chung MS, Jung SC, et al. Comparison of high-resolution MR imaging and digital subtraction angiography for the characterization and diagnosis of intracranial artery disease. AJNR Am J Neuroradiol, 2016, 37(12): 2245-2250. |
36. | Kim DK, Verdoorn JT, Gunderson TM, et al. Comparison of non-contrast vessel wall imaging and 3-D time-of-flight MRA for atherosclerotic stenosis and plaque characterization within intracranial arteries. J Neuroradiol, 2020, 47(4): 266-271. |
37. | Al-smadi AS, Abdalla RN, Elmokadem AH, et al. Diagnostic accuracy of high-resolution black-blood MRI in the evaluation of intracranial large-vessel arterial occlusions. AJNR Am J Neuroradiol, 2019, 40(6): 954-959. |
38. | Chung JW, Cha J, Lee MJ, et al. Intensive statin treatment in acute ischaemic stroke patients with intracranial atherosclerosis: a high-resolution magnetic resonance imaging study (STAMINA-MRI Study). J Neurol Neurosurg Psychiatry, 2020, 91(2): 204-211. |
39. | Eker OF, Ameli R, Makris N, et al. MRI assessment of oxygen metabolism and hemodynamic status in symptomatic intracranial atherosclerotic stenosis: a pilot study. J Neuroimaging, 2019, 29(4): 467-475. |
40. | Xu WH, Xu YYY, Li ML, et al. Non-moyamoya vessel network formation along steno-occlusive middle cerebral artery. Stroke, 2016, 47(Suppl 1): AWP130. |
41. | Mandell DM, Mossa-Basha M, Qiao Y, et al. Intracranial vessel wall MRI: principles and expert consensus recommendations of the American Society of Neuroradiology. AJNR Am J Neuroradiol, 2017, 38(2): 218-229. |
42. | Aliabadi D, Tilli FV, Bowers TR, et al. Incidence and angiographic predictors of side branch occlusion following high-pressure intracoronary stenting. Am J Cardiol, 1997, 80(8): 994-997. |
43. | Wu F, Zhang Q, Dong K, et al. Whole-brain magnetic resonance imaging of plaque burden and lenticulostriate arteries in patients with different types of stroke. Ther Adv Neurol Disord, 2019, 12: 1756286419833295. |
44. | Zhang Z, Fan Z, Kong Q, et al. Visualization of the lenticulostriate arteries at 3T using black-blood T1-weighted intracranial vessel wall imaging: comparison with 7T TOF-MRA. Eur Radiol, 2019, 29(3): 1452-1459. |
45. | Sui B, Gao P. High-resolution vessel wall magnetic resonance imaging of carotid and intracranial vessels. Acta Radiol, 2019, 60(10): 1329-1340. |
46. | Debette S, Compter A, Labeyrie MA, et al. Epidemiology, pathophysiology, diagnosis, and management of intracranial artery dissection. Lancet Neurol, 2015, 14(6): 640-654. |
47. | Shin DH, Hong JM, Lee JS, et al. Comparison of potential risks between intracranial and extracranial vertebral artery dissections. Eur Neurol, 2014, 71(5/6): 305-312. |
48. | Kwon JY, Kim NY, Suh DC, et al. Intracranial and extracranial arterial dissection presenting with ischemic stroke: lesion location and stroke mechanism. J Neurol Sci, 2015, 358(1/2): 371-376. |
49. | Sato S, Toyoda K, Matsuoka H, et al. Isolated anterior cerebral artery territory infarction: dissection as an etiological mechanism. Cerebrovasc Dis, 2010, 29(2): 170-177. |
50. | Nakamura Y, Yamaguchi Y, Makita N, et al. Clinical and radiological characteristics of intracranial artery dissection using recently proposed diagnostic criteria. J Stroke Cerebrovasc Dis, 2019, 28(6): 1691-1702. |
51. | Cho YS, Choi PK, Seon HJ, et al. Intimal flap detected by three-dimensional curved multiplanar reconstruction image in isolated posterior inferior cerebellar artery dissection: a report of two cases. BMC Neurol, 2019, 19(1): 74. |
52. | Park MS, Cha J, Chung JW, et al. Arterial dissection as a cause of intracranial stenosis in East Asians. J Am Coll Cardiol, 2017, 70(17): 2205-2206. |
53. | Lee SH, Jung JM, Kim KY, et al. Intramural hematoma shape and acute cerebral infarction in intracranial artery dissection: a high-resolution magnetic resonance imaging study. Cerebrovasc Dis, 2020, 49(3): 269-276. |
54. | Shin J, Chung JW, Park MS, et al. Outcomes after ischemic stroke caused by intracranial atherosclerosis vs dissection. Neurology, 2018, 91(19): e1751-e1759. |
55. | Kishi Y. Spontaneous healing of an isolated posterior inferior cerebellar artery dissection without stroke: a case report. BMC Neurol, 2019, 19(1): 124. |
56. | Arenillas J, Dieleman N, Bos D. Intracranial arterial wall imaging: techniques, clinical applicability, and future perspectives. Int J Stroke, 2019, 14(6): 564-573. |
57. | Kim YJ, Lee DH, Kwon JY, et al. High resolution MRI difference between moyamoya disease and intracranial atherosclerosis. Eur J Neurol, 2013, 20(9): 1311-1318. |
58. | Muraoka S, Araki Y, Taoka T, et al. Prediction of intracranial arterial stenosis progression in patients with moyamoya vasculopathy: contrast-enhanced high-resolution magnetic resonance vessel wall imaging. World Neurosurg, 2018, 116: e1114-e1121. |
59. | Wang M, Yang Y, Zhou F, et al. The contrast enhancement of intracranial arterial wall on high-resolution MRI and its clinical relevance in patients with moyamoya vasculopathy. Sci Rep, 2017, 7: 44264. |
60. | Yuan M, Liu ZQ, Wang ZQ, et al. High-resolution MR imaging of the arterial wall in moyamoya disease. Neurosci Lett, 2015, 584: 77-82. |
61. | Mossa-basha M, de Havenon A, Becker KJ, et al. Added value of vessel wall magnetic resonance imaging in the differentiation of moyamoya vasculopathies in a non-Asian cohort. Stroke, 2016, 47(7): 1782-1788. |
62. | Ya J, Zhou D, Ding J, et al. High-resolution combined arterial spin labeling MR for identifying cerebral arterial stenosis induced by moyamoya disease or atherosclerosis. Ann Transl Med, 2020, 8(4): 87. |
63. | Campi A, Benndorf G, Filippi M, et al. Primary angiitis of the central nervous system: serial MRI of brain and spinal cord. Neuroradiology, 2001, 43(8): 599-607. |
64. | Eiden S, Beck C, Venhoff N, et al. High-resolution contrast-enhanced vessel wall imaging in patients with suspected cerebral vasculitis: prospective comparison of whole-brain 3D T1 SPACE versus 2D T1 black blood MRI at 3 Tesla. PLoS One, 2019, 14(3): e0213514. |
65. | Mandell DM, Matouk CC, Farb RI, et al. Vessel wall MRI to differentiate between reversible cerebral vasoconstriction syndrome and central nervous system vasculitis: preliminary results. Stroke, 2012, 43(3): 860-862. |
66. | Obusez EC, Hui F, Hajj-ali RA, et al. High-resolution MRI vessel wall imaging: spatial and temporal patterns of reversible cerebral vasoconstriction syndrome and central nervous system vasculitis. AJNR Am J Neuroradiol, 2014, 35(8): 1527-1532. |
67. | Mossa-Basha M, Hwang WD, De Havenon A, et al. Multicontrast high-resolution vessel wall magnetic resonance imaging and its value in differentiating intracranial vasculopathic processes. Stroke, 2015, 46(6): 1567-1573. |
68. | Chung SW, Lee KM, Heo SH, et al. A systemic lupus erythematosus patient with thunderclap headache: reversible cerebral vasoconstriction syndrome. Lupus, 2019, 28(7): 898-902. |
69. | Zwartbol MHT, van der kolk AG, Ghaznawi R, et al. Intracranial vessel wall lesions on 7T MRI (magnetic resonance imaging). Stroke, 2019, 50(1): 88-94. |
70. | Zwartbol MHT, Geerlings MI, Ghaznawi R, et al. Intracranial atherosclerotic burden on 7T MRI is associated with markers of extracranial atherosclerosis: the SMART-MR study. AJNR Am J Neuroradiol, 2019, 40(12): 2016-2022. |
71. | Li Y, Chen Q, Wei Z, et al. One-stop MR neurovascular vessel wall imaging with a 48-channel coil system at 3 T. IEEE Trans Biomed Eng, 2020, 67(8): 2317-2327. |
72. | Li ML, Lin QQ, Liu YT, et al. The clinical value of head-neck joint high-resolution vessel wall imaging in ischemic stroke. J Stroke Cerebrovasc Dis, 2020, 29(9): 105062. |
- 1. Xu WH, Li ML, Gao S, et al. In vivo high-resolution MR imaging of symptomatic and asymptomatic middle cerebral artery atherosclerotic stenosis. Atherosclerosis, 2010, 212(2): 507-511.
- 2. CAI J, Hatsukami TS, Ferguson MS, et al. In vivo quantitative measurement of intact fibrous cap and lipid-rich necrotic core size in atherosclerotic carotid plaque: comparison of high-resolution, contrast-enhanced magnetic resonance imaging and histology. Circulation, 2005, 112(22): 3437-3444.
- 3. Yang WQ, Huang B, Liu XT, et al. Reproducibility of high-resolution MRI for the middle cerebral artery plaque at 3T. Eur J Radiol, 2014, 83(1): e49-e55.
- 4. Zhao DL, Li C, Chen XH, et al. Reproducibility of 3.0 T high-resolution magnetic resonance imaging for the identification and quantification of middle cerebral arterial atherosclerotic plaques. J Stroke Cerebrovasc Dis, 2019, 28(7): 1824-1831.
- 5. Mossa-basha M, Watase H, Sun J, et al. Inter-rater and scan-rescan reproducibility of the detection of intracranial atherosclerosis on contrast-enhanced 3D vessel wall MRI. Br J Radiol, 2019, 92(1097): 20180973.
- 6. Yamada K, Song Y, Hippe DS, et al. Quantitative evaluation of high intensity signal on MIP images of carotid atherosclerotic plaques from routine TOF-MRA reveals elevated volumes of intraplaque hemorrhage and lipid rich necrotic core. J Cardiovasc Magn Reson, 2012, 14(1): 81.
- 7. Zavodni AE, Wasserman BA, McClelland RL, et al. Carotid artery plaque morphology and composition in relation to incident cardiovascular events: the Multi-Ethnic Study of Atherosclerosis (MESA). Radiology, 2014, 271(2): 381-389.
- 8. Takaya N, Yuan C, Chu B, et al. Association between carotid plaque characteristics and subsequent ischemic cerebrovascular events: a prospective assessment with MRI--initial results. Stroke, 2006, 37(3): 818-823.
- 9. Underhill H, Yuan C, Yarnykh VL, et al. Predictors of surface disruption with MR imaging in asymptomatic carotid artery stenosis. AJNR Am J Neuroradiol, 2010, 31(3): 487-493.
- 10. Lee YK, Kwak HS, Chung GH, et al. Lipid-rich necrotic core of basilar artery atherosclerotic plaque: contrast-enhanced black blood imaging on vessel wall imaging. Diagnostics (Basel), 2019, 9(3): 69.
- 11. Shi Z, Li J, Zhao M, et al. Quantitative histogram analysis on intracranial atherosclerotic plaques: a high-resolution magnetic resonance imaging study. Stroke, 2020, 51(7): 2161-2169.
- 12. Qiao Y, Zeiler SR, Mirbagheri S, et al. Intracranial plaque enhancement in patients with cerebrovascular events on high-spatial-resolution MR images. Radiology, 2014, 271(2): 534-542.
- 13. Teng Z, Peng W, Zhan Q, et al. An assessment on the incremental value of high-resolution magnetic resonance imaging to identify culprit plaques in atherosclerotic disease of the middle cerebral artery. Eur Radiol, 2016, 26(7): 2206-2214.
- 14. Vakil P, Vranic J, Hurley MC, et al. T1 gadolinium enhancement of intracranial atherosclerotic plaques associated with symptomatic ischemic presentations. AJNR Am J Neuroradiol, 2013, 34(12): 2252-2258.
- 15. Zou XD, Chung YC, Zhang L, et al. Middle cerebral artery atherosclerotic plaques in recent small subcortical infarction: a three-dimensional high-resolution MR study. Biomed Res Int, 2015, 2015: 540217.
- 16. Alexander MD, de Havenon A, Kim SE, et al. Assessment of quantitative methods for enhancement measurement on vessel wall magnetic resonance imaging evaluation of intracranial atherosclerosis. Neuroradiology, 2019, 61(6): 643-650.
- 17. Kwee RM, Qiao Y, Liu L, et al. Temporal course and implications of intracranial atherosclerotic plaque enhancement on high-resolution vessel wall MRI. Neuroradiology, 2019, 61(6): 651-657.
- 18. Subramanian G, Silva J, Silver FL, et al. Risk factors for posterior compared to anterior ischemic stroke: an observational study of the Registry of the Canadian Stroke Network. Neuroepidemiology, 2009, 33(1): 12-16.
- 19. Warfarin-Aspirin Symptomatic Intracranial Disease (WASID) Trial Investigators. Design, progress and challenges of a double-blind trial of warfarin versus aspirin for symptomatic intracranial arterial stenosis. Neuroepidemiology, 2003, 22(2): 106-117.
- 20. Huang J, Jiao S, Song Y, et al. Association between type 2 diabetes mellitus, especially recently uncontrolled glycemia, and intracranial plaque characteristics: a high-resolution magnetic resonance imaging study. J Diabetes Investig, 2020, 11(5): 1278-1284.
- 21. Takano K, Hida K, Kuwabara Y, et al. Intracranial arterial wall enhancement using gadolinium-enhanced 3D black-blood T1-weighted imaging. Eur J Radiol, 2017, 86: 13-19.
- 22. Kim JM, Jung KH, Sohn CH, et al. Intracranial plaque enhancement from high resolution vessel wall magnetic resonance imaging predicts stroke recurrence. Int J Stroke, 2016, 11(2): 171-179.
- 23. Guggenberger K, Krafft AJ, Ludwig U, et al. High-resolution compressed-sensing T1 black-blood MRI: a new multipurpose sequence in vascular neuroimaging?. Clin Neuroradiol, 2021, 31(1): 207-216.
- 24. Gupta A, Baradaran H, Al-Dasuqi K, et al. Gadolinium enhancement in intracranial atherosclerotic plaque and ischemic stroke: a systematic review and meta-analysis. J Am Heart Assoc, 2016, 5(8): e003815.
- 25. Jia L, Zhang N, Kukun H, et al. Three-dimensional intra- and extracranial arterial vessel wall joint imaging in patients with cerebrovascular disease. Eur J Radiol, 2020, 126: 108921.
- 26. Wang E, Shao S, Li S, et al. A high-resolution MRI study of the relationship between plaque enhancement and ischemic stroke events in patients with intracranial atherosclerotic stenosis. Front Neurol, 2018, 9: 1154.
- 27. Huang J, Jiao S, Zhao X, et al. Characteristics of patients with enhancing intracranial atherosclerosis and association between plaque enhancement and recent cerebrovascular ischemic events: a high-resolution magnetic resonance imaging study. Acta Radiol, 2019, 60(10): 1301-1307.
- 28. Ryu CW, Jahng GH, Shin HS. Gadolinium enhancement of atherosclerotic plaque in the middle cerebral artery: relation to symptoms and degree of stenosis. AJNR Am J Neuroradiol, 2014, 35(12): 2306-2310.
- 29. Kern KC, Liebeskind DS. Vessel wall imaging of cerebrovascular disorders. Curr Treat Options Cardiovasc Med, 2019, 21(11): 65.
- 30. Lu X, Li C, Qu C, et al. A high resolution MRI study of the relationship between plaque enhancement and perforator stroke after stenting for symptomatic vertebrobasilar artery stenosis. J Stroke Cerebrovasc Dis, 2021, 30(3): 105558.
- 31. Zhu C, Tian X, Degnan AJ, et al. Clinical significance of intraplaque hemorrhage in low- and high-grade basilar artery stenosis on high-resolution MRI. AJNR Am J Neuroradiol, 2018, 39(7): 1286-1292.
- 32. Yu JH, Kwak HS, Chung GH, et al. Association of intraplaque hemorrhage and acute infarction in patients with basilar artery plaque. Stroke, 2015, 46(10): 2768-2772.
- 33. Liu Q, Huang J, Degnan AJ, et al. Comparison of high-resolution MRI with CT angiography and digital subtraction angiography for the evaluation of middle cerebral artery atherosclerotic steno-occlusive disease. Int J Cardiovasc Imaging, 2013, 29(7): 1491-1498.
- 34. Bai X, Lv P, Liu K, et al. 3D black-blood luminal angiography derived from high-resolution MR vessel wall imaging in detecting MCA stenosis: a preliminary study. AJNR Am J Neuroradiol, 2018, 39(10): 1827-1832.
- 35. Lee N, Chung MS, Jung SC, et al. Comparison of high-resolution MR imaging and digital subtraction angiography for the characterization and diagnosis of intracranial artery disease. AJNR Am J Neuroradiol, 2016, 37(12): 2245-2250.
- 36. Kim DK, Verdoorn JT, Gunderson TM, et al. Comparison of non-contrast vessel wall imaging and 3-D time-of-flight MRA for atherosclerotic stenosis and plaque characterization within intracranial arteries. J Neuroradiol, 2020, 47(4): 266-271.
- 37. Al-smadi AS, Abdalla RN, Elmokadem AH, et al. Diagnostic accuracy of high-resolution black-blood MRI in the evaluation of intracranial large-vessel arterial occlusions. AJNR Am J Neuroradiol, 2019, 40(6): 954-959.
- 38. Chung JW, Cha J, Lee MJ, et al. Intensive statin treatment in acute ischaemic stroke patients with intracranial atherosclerosis: a high-resolution magnetic resonance imaging study (STAMINA-MRI Study). J Neurol Neurosurg Psychiatry, 2020, 91(2): 204-211.
- 39. Eker OF, Ameli R, Makris N, et al. MRI assessment of oxygen metabolism and hemodynamic status in symptomatic intracranial atherosclerotic stenosis: a pilot study. J Neuroimaging, 2019, 29(4): 467-475.
- 40. Xu WH, Xu YYY, Li ML, et al. Non-moyamoya vessel network formation along steno-occlusive middle cerebral artery. Stroke, 2016, 47(Suppl 1): AWP130.
- 41. Mandell DM, Mossa-Basha M, Qiao Y, et al. Intracranial vessel wall MRI: principles and expert consensus recommendations of the American Society of Neuroradiology. AJNR Am J Neuroradiol, 2017, 38(2): 218-229.
- 42. Aliabadi D, Tilli FV, Bowers TR, et al. Incidence and angiographic predictors of side branch occlusion following high-pressure intracoronary stenting. Am J Cardiol, 1997, 80(8): 994-997.
- 43. Wu F, Zhang Q, Dong K, et al. Whole-brain magnetic resonance imaging of plaque burden and lenticulostriate arteries in patients with different types of stroke. Ther Adv Neurol Disord, 2019, 12: 1756286419833295.
- 44. Zhang Z, Fan Z, Kong Q, et al. Visualization of the lenticulostriate arteries at 3T using black-blood T1-weighted intracranial vessel wall imaging: comparison with 7T TOF-MRA. Eur Radiol, 2019, 29(3): 1452-1459.
- 45. Sui B, Gao P. High-resolution vessel wall magnetic resonance imaging of carotid and intracranial vessels. Acta Radiol, 2019, 60(10): 1329-1340.
- 46. Debette S, Compter A, Labeyrie MA, et al. Epidemiology, pathophysiology, diagnosis, and management of intracranial artery dissection. Lancet Neurol, 2015, 14(6): 640-654.
- 47. Shin DH, Hong JM, Lee JS, et al. Comparison of potential risks between intracranial and extracranial vertebral artery dissections. Eur Neurol, 2014, 71(5/6): 305-312.
- 48. Kwon JY, Kim NY, Suh DC, et al. Intracranial and extracranial arterial dissection presenting with ischemic stroke: lesion location and stroke mechanism. J Neurol Sci, 2015, 358(1/2): 371-376.
- 49. Sato S, Toyoda K, Matsuoka H, et al. Isolated anterior cerebral artery territory infarction: dissection as an etiological mechanism. Cerebrovasc Dis, 2010, 29(2): 170-177.
- 50. Nakamura Y, Yamaguchi Y, Makita N, et al. Clinical and radiological characteristics of intracranial artery dissection using recently proposed diagnostic criteria. J Stroke Cerebrovasc Dis, 2019, 28(6): 1691-1702.
- 51. Cho YS, Choi PK, Seon HJ, et al. Intimal flap detected by three-dimensional curved multiplanar reconstruction image in isolated posterior inferior cerebellar artery dissection: a report of two cases. BMC Neurol, 2019, 19(1): 74.
- 52. Park MS, Cha J, Chung JW, et al. Arterial dissection as a cause of intracranial stenosis in East Asians. J Am Coll Cardiol, 2017, 70(17): 2205-2206.
- 53. Lee SH, Jung JM, Kim KY, et al. Intramural hematoma shape and acute cerebral infarction in intracranial artery dissection: a high-resolution magnetic resonance imaging study. Cerebrovasc Dis, 2020, 49(3): 269-276.
- 54. Shin J, Chung JW, Park MS, et al. Outcomes after ischemic stroke caused by intracranial atherosclerosis vs dissection. Neurology, 2018, 91(19): e1751-e1759.
- 55. Kishi Y. Spontaneous healing of an isolated posterior inferior cerebellar artery dissection without stroke: a case report. BMC Neurol, 2019, 19(1): 124.
- 56. Arenillas J, Dieleman N, Bos D. Intracranial arterial wall imaging: techniques, clinical applicability, and future perspectives. Int J Stroke, 2019, 14(6): 564-573.
- 57. Kim YJ, Lee DH, Kwon JY, et al. High resolution MRI difference between moyamoya disease and intracranial atherosclerosis. Eur J Neurol, 2013, 20(9): 1311-1318.
- 58. Muraoka S, Araki Y, Taoka T, et al. Prediction of intracranial arterial stenosis progression in patients with moyamoya vasculopathy: contrast-enhanced high-resolution magnetic resonance vessel wall imaging. World Neurosurg, 2018, 116: e1114-e1121.
- 59. Wang M, Yang Y, Zhou F, et al. The contrast enhancement of intracranial arterial wall on high-resolution MRI and its clinical relevance in patients with moyamoya vasculopathy. Sci Rep, 2017, 7: 44264.
- 60. Yuan M, Liu ZQ, Wang ZQ, et al. High-resolution MR imaging of the arterial wall in moyamoya disease. Neurosci Lett, 2015, 584: 77-82.
- 61. Mossa-basha M, de Havenon A, Becker KJ, et al. Added value of vessel wall magnetic resonance imaging in the differentiation of moyamoya vasculopathies in a non-Asian cohort. Stroke, 2016, 47(7): 1782-1788.
- 62. Ya J, Zhou D, Ding J, et al. High-resolution combined arterial spin labeling MR for identifying cerebral arterial stenosis induced by moyamoya disease or atherosclerosis. Ann Transl Med, 2020, 8(4): 87.
- 63. Campi A, Benndorf G, Filippi M, et al. Primary angiitis of the central nervous system: serial MRI of brain and spinal cord. Neuroradiology, 2001, 43(8): 599-607.
- 64. Eiden S, Beck C, Venhoff N, et al. High-resolution contrast-enhanced vessel wall imaging in patients with suspected cerebral vasculitis: prospective comparison of whole-brain 3D T1 SPACE versus 2D T1 black blood MRI at 3 Tesla. PLoS One, 2019, 14(3): e0213514.
- 65. Mandell DM, Matouk CC, Farb RI, et al. Vessel wall MRI to differentiate between reversible cerebral vasoconstriction syndrome and central nervous system vasculitis: preliminary results. Stroke, 2012, 43(3): 860-862.
- 66. Obusez EC, Hui F, Hajj-ali RA, et al. High-resolution MRI vessel wall imaging: spatial and temporal patterns of reversible cerebral vasoconstriction syndrome and central nervous system vasculitis. AJNR Am J Neuroradiol, 2014, 35(8): 1527-1532.
- 67. Mossa-Basha M, Hwang WD, De Havenon A, et al. Multicontrast high-resolution vessel wall magnetic resonance imaging and its value in differentiating intracranial vasculopathic processes. Stroke, 2015, 46(6): 1567-1573.
- 68. Chung SW, Lee KM, Heo SH, et al. A systemic lupus erythematosus patient with thunderclap headache: reversible cerebral vasoconstriction syndrome. Lupus, 2019, 28(7): 898-902.
- 69. Zwartbol MHT, van der kolk AG, Ghaznawi R, et al. Intracranial vessel wall lesions on 7T MRI (magnetic resonance imaging). Stroke, 2019, 50(1): 88-94.
- 70. Zwartbol MHT, Geerlings MI, Ghaznawi R, et al. Intracranial atherosclerotic burden on 7T MRI is associated with markers of extracranial atherosclerosis: the SMART-MR study. AJNR Am J Neuroradiol, 2019, 40(12): 2016-2022.
- 71. Li Y, Chen Q, Wei Z, et al. One-stop MR neurovascular vessel wall imaging with a 48-channel coil system at 3 T. IEEE Trans Biomed Eng, 2020, 67(8): 2317-2327.
- 72. Li ML, Lin QQ, Liu YT, et al. The clinical value of head-neck joint high-resolution vessel wall imaging in ischemic stroke. J Stroke Cerebrovasc Dis, 2020, 29(9): 105062.