1. |
Yang Y, Lindsey-Boltz LA, Vaughn CM, et al. Circadian clock, carcinogenesis, chronochemotherapy connections. J Biol Chem, 2021, 297(3): 101068.
|
2. |
Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol, 2010, 72: 517-549.
|
3. |
Poole J, Kitchen GB. Circadian regulation of innate immunity in animals and humans and implications for human disease. Semin Immunopathol, 2022, 15: 1-10.
|
4. |
Hergenhan S, Holtkamp S, Scheiermann C. Molecular interactions between components of the circadian clock and the immune system. J Mol Biol, 2020, 432(12): 3700-3713.
|
5. |
He W, Holtkamp S, Hergenhan SM, et al. Circadian expression of migratory factors establishes lineage-specific signatures that guide the homing of leukocyte subsets to tissues. Immunity, 2018, 49(6): 1175-1190.e7.
|
6. |
Ella K, Csépányi-Kömi R, Káldi K. Circadian regulation of human peripheral neutrophils. Brain Behav Immun, 2016, 57: 209-221.
|
7. |
Silver AC, Arjona A, Hughes ME, et al. Circadian expression of clock genes in mouse macrophages, dendritic cells, and B cells. Brain Behav Immun, 2012, 26(3): 407-413.
|
8. |
Scheiermann C, Kunisaki Y, Lucas D, et al. Adrenergic nerves govern circadian leukocyte recruitment to tissues. Immunity, 2012, 37(2): 290-301.
|
9. |
Steffens S, Winter C, Schloss MJ, et al. Circadian control of inflammatory processes in atherosclerosis and its complications. Arterioscler Thromb Vasc Biol, 2017, 37(6): 1022-1028.
|
10. |
Hand LE, Hopwood TW, Dickson SH, et al. The circadian clock regulates inflammatory arthritis. FASEB J, 2016, 30(11): 3759-3770.
|
11. |
Carnevale S, Ghasemi S, Rigatelli A, et al. The complexity of neutrophils in health and disease: focus on cancer. Semin Immunol, 2020, 48: 101409.
|
12. |
Casanova-Acebes M, Nicolás-Ávila JA, Li JL, et al. Neutrophils instruct homeostatic and pathological states in naive tissues. J Exp Med, 2018, 215(11): 2778-2795.
|
13. |
Lawrence SM, Corriden R, Nizet V. The ontogeny of a neutrophil: mechanisms of granulopoiesis and homeostasis. Microbiol Mol Biol Rev, 2018, 82(1): e00057-e00117.
|
14. |
Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol, 2013, 13(3): 159-175.
|
15. |
Eash KJ, Greenbaum AM, Gopalan PK, et al. CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J Clin Invest, 2010, 120(7): 2423-2431.
|
16. |
García-García A, Korn C, García-Fernández M, et al. Dual cholinergic signals regulate daily migration of hematopoietic stem cells and leukocytes. Blood, 2019, 133(3): 224-236.
|
17. |
Devi S, Wang Y, Chew WK, et al. Neutrophil mobilization via plerixafor-mediated CXCR4 inhibition arises from lung demargination and blockade of neutrophil homing to the bone marrow. J Exp Med, 2013, 210(11): 2321-2336.
|
18. |
Adrover JM, Del Fresno C, Crainiciuc G, et al. A neutrophil timer coordinates immune defense and vascular protection. Immunity, 2019, 51(5): 966-967.
|
19. |
Summers C, Rankin SM, Condliffe AM, et al. Neutrophil kinetics in health and disease. Trends Immunol, 2010, 31(8): 318-324.
|
20. |
Casanova-Acebes M, Pitaval C, Weiss LA, et al. Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell, 2013, 153(5): 1025-1035.
|
21. |
Martin C, Burdon PC, Bridger G, et al. Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity, 2003, 19(4): 583-593.
|
22. |
Zhang D, Chen G, Manwani D, et al. Neutrophil ageing is regulated by the microbiome. Nature, 2015, 525(7570): 528-532.
|
23. |
Adrover JM, Aroca-Crevillén A, Crainiciuc G, et al. Programmed ‘disarming’ of the neutrophil proteome reduces the magnitude of inflammation. Nat Immunol, 2020, 21(2): 135-144.
|
24. |
Yipp BG, Kim JH, Lima R, et al. The lung is a host defense niche for immediate neutrophil-mediated vascular protection. Sci Immunol, 2017, 2(10): eaam8929.
|
25. |
Wang J, Hossain M, Thanabalasuriar A, et al. Visualizing the function and fate of neutrophils in sterile injury and repair. Science, 2017, 358(6359): 111-116.
|
26. |
Gibbs J, Ince L, Matthews L, et al. An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. Nat Med, 2014, 20(8): 919-926.
|
27. |
Ballesteros I, Rubio-Ponce A, Genua M, et al. Co-option of neutrophil fates by tissue environments. Cell, 2020, 183(5): 1282-1297.e18.
|
28. |
Deniset JF, Surewaard BG, Lee WY, et al. Splenic Ly6Ghigh mature and Ly6Gint immature neutrophils contribute to eradication of S. pneumoniae. J Exp Med, 2017, 214(5): 1333-1350.
|
29. |
Lok LSC, Dennison TW, Mahbubani KM, et al. Phenotypically distinct neutrophils patrol uninfected human and mouse lymph nodes. Proc Natl Acad Sci U S A, 2019, 116(38): 19083-19089.
|
30. |
Schloss MJ, Horckmans M, Nitz K, et al. The time-of-day of myocardial infarction onset affects healing through oscillations in cardiac neutrophil recruitment. EMBO Mol Med, 2016, 8(8): 937-948.
|
31. |
Suárez-Barrientos A, López-Romero P, Vivas D, et al. Circadian variations of infarct size in acute myocardial infarction. Heart, 2011, 97(12): 970-976.
|
32. |
Alibhai FJ, Tsimakouridze EV, Chinnappareddy N, et al. Short-term disruption of diurnal rhythms after murine myocardial infarction adversely affects long-term myocardial structure and function. Circ Res, 2014, 114(11): 1713-1722.
|
33. |
Mistry P, Reitz CJ, Khatua TN, et al. Circadian influence on the microbiome improves heart failure outcomes. J Mol Cell Cardiol, 2020, 149: 54-72.
|
34. |
Campbell IK, Leong D, Edwards KM, et al. Therapeutic targeting of the G-CSF receptor reduces neutrophil trafficking and joint inflammation in antibody-mediated inflammatory arthritis. J Immunol, 2016, 197(11): 4392-4402.
|
35. |
García-Prieto J, Villena-Gutiérrez R, Gómez M, et al. Neutrophil stunning by metoprolol reduces infarct size. Nat Commun, 2017, 8: 14780.
|
36. |
Uddin M, Watz H, Malmgren A, et al. NETopathic inflammation in chronic obstructive pulmonary disease and severe asthma. Front Immunol, 2019, 10: 47.
|
37. |
Bonavita O, Mollica Poeta V, Massara M, et al. Regulation of hematopoiesis by the chemokine system. Cytokine, 2018, 109: 76-80.
|
38. |
Zhong Y, Yu X, Li X, et al. Augmented early aged neutrophil infiltration contributes to late remodeling post myocardial infarction. Microvasc Res, 2022, 139: 104268.
|
39. |
Jaillon S, Ponzetta A, Di Mitri D, et al. Neutrophil diversity and plasticity in tumour progression and therapy. Nat Rev Cancer, 2020, 20(9): 485-503.
|
40. |
Shaul ME, Fridlender ZG. Tumour-associated neutrophils in patients with cancer. Nat Rev Clin Oncol, 2019, 16(10): 601-620.
|
41. |
An Z, Li J, Yu J, et al. Neutrophil extracellular traps induced by IL-8 aggravate atherosclerosis via activation NF-κB signaling in macrophages. Cell Cycle, 2019, 18(21): 2928-2938.
|
42. |
Yang J, Kumar A, Vilgelm AE, et al. Loss of CXCR4 in myeloid cells enhances antitumor immunity and reduces melanoma growth through NK cell and Fasl mechanisms. Cancer Immunol Res, 2018, 6(10): 1186-1198.
|
43. |
Peng Z, Liu C, Victor AR, et al. Tumors exploit CXCR4hiCD62Llo aged neutrophils to facilitate metastatic spread. Oncoimmunology, 2021, 10(1): 1870811.
|
44. |
Paudel KR, Jha SK, Allam VSRR, et al. Recent advances in chronotherapy targeting respiratory diseases. Pharmaceutics, 2021, 13(12): 2008.
|
45. |
Winter C, Silvestre-Roig C, Ortega-Gomez A, et al. Chrono-pharmacological targeting of the CCL2-CCR2 axis ameliorates atherosclerosis. Cell Metab, 2018, 28(1): 175-182.e5.
|