1. |
Schemitsch EH. Size Matters: defining critical in bone defect size!. J Orthop Trauma, 2017, 31(Suppl 5): S20-S22.
|
2. |
Fröhlich M, Grayson WL, Wan LQ, et al. Tissue engineered bone grafts: biological requirements, tissue culture and clinical relevance. Curr Stem Cell Res Ther, 2008, 3(4): 254-264.
|
3. |
Carano RA, Filvaroff EH. Angiogenesis and bone repair. Drug Discov Today, 2003, 8(21): 980-989.
|
4. |
Tomlinson RE, Silva MJ. Skeletal blood flow in bone repair and maintenance. Bone Res, 2013, 1(4): 311-322.
|
5. |
Simunovic F, Finkenzeller G. Vascularization strategies in bone tissue engineering. Cells, 2021, 10(7): 1749.
|
6. |
Percival CJ, Richtsmeier JT. Angiogenesis and intramembranous osteogenesis. Dev Dyn, 2013, 242(8): 909-922.
|
7. |
Salhotra A, Shah HN, Levi B, et al. Mechanisms of bone development and repair. Nat Rev Mol Cell Biol, 2020, 21(11): 696-711.
|
8. |
Vailhé B, Vittet D, Feige JJ. In vitro models of vasculogenesis and angiogenesis. Lab Invest, 2001, 81(4): 439-452.
|
9. |
Hu K, Olsen BR. The roles of vascular endothelial growth factor in bone repair and regeneration. Bone, 2016, 91: 30-38.
|
10. |
Yue S, He H, Li B, et al. Hydrogel as a biomaterial for bone tissue engineering: a review. Nanomaterials (Basel), 2020, 10(8): 1511.
|
11. |
Crosby CO, Zoldan J. Mimicking the physical cues of the ECM in angiogenic biomaterials. Regen Biomater, 2019, 6(2): 61-73.
|
12. |
Giraudo MV, Di Francesco D, Catoira MC, et al. Angiogenic potential in biological hydrogels. Biomedicines, 2020, 8(10): 436.
|
13. |
Buwalda SJ, Vermonden T, Hennink WE. Hydrogels for therapeutic delivery: current developments and future directions. Biomacromolecules, 2017, 18(2): 316-330.
|
14. |
Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science, 1997, 275(5302): 964-967.
|
15. |
Chen YW, Shen YF, Ho CC, et al. Osteogenic and angiogenic potentials of the cell-laden hydrogel/mussel-inspired calcium silicate complex hierarchical porous scaffold fabricated by 3D bioprinting. Mater Sci Eng C Mater Biol Appl, 2018, 91: 679-687.
|
16. |
Thébaud NB, Pierron D, Bareille R, et al. Human endothelial progenitor cell attachment to polysaccharide-based hydrogels: a pre-requisite for vascular tissue engineering. J Mater Sci Mater Med, 2007, 18(2): 339-345.
|
17. |
Mihaila SM, Popa EG, Reis RL, et al. Fabrication of endothelial cell-laden carrageenan microfibers for microvascularized bone tissue engineering applications. Biomacromolecules, 2014, 15(8): 2849-2860.
|
18. |
Santos L, Fuhrmann G, Juenet M, et al. Extracellular stiffness modulates the expression of functional proteins and growth factors in endothelial cells. Adv Healthc Mater, 2015, 4(14): 2056-2063.
|
19. |
Zhao Z, Wang M, Shao F, et al. Porous tantalum-composited gelatin nanoparticles hydrogel integrated with mesenchymal stem cell-derived endothelial cells to construct vascularized tissue in vivo. Regen Biomater, 2021, 8(6): rbab051.
|
20. |
Paschos NK, Brown WE, Eswaramoorthy R, et al. Advances in tissue engineering through stem cell-based co-culture. J Tissue Eng Regen Med, 2015, 9(5): 488-503.
|
21. |
Caplan AI. All MSCs are pericytes?. Cell Stem Cell, 2008, 3(3): 229-230.
|
22. |
Chen W, Thein-Han W, Weir MD, et al. Prevascularization of biofunctional calcium phosphate cement for dental and craniofacial repairs. Dent Mater, 2014, 30(5): 535-544.
|
23. |
Wenz A, Tjoeng I, Schneider I, et al. Improved vasculogenesis and bone matrix formation through coculture of endothelial cells and stem cells in tissue-specific methacryloyl gelatin-based hydrogels. Biotechnol Bioeng, 2018, 115(10): 2643-2653.
|
24. |
Barre A, Naudot M, Colin F, et al. An alginate-based hydrogel with a high angiogenic capacity and a high osteogenic potential. Biores Open Access, 2020, 9(1): 174-182.
|
25. |
Liu J, Chuah YJ, Fu J, et al. Co-culture of human umbilical vein endothelial cells and human bone marrow stromal cells into a micro-cavitary gelatin-methacrylate hydrogel system to enhance angiogenesis. Mater Sci Eng C Mater Biol Appl, 2019, 102: 906-916.
|
26. |
Yang C, Han B, Cao C, et al. An injectable double-network hydrogel for the co-culture of vascular endothelial cells and bone marrow mesenchymal stem cells for simultaneously enhancing vascularization and osteogenesis. J Mater Chem B, 2018, 6(47): 7811-7821.
|
27. |
Bai Y, Bai L, Zhou J, et al. Sequential delivery of VEGF, FGF-2 and PDGF from the polymeric system enhance HUVECs angiogenesis in vitro and CAM angiogenesis. Cell Immunol, 2018, 323: 19-32.
|
28. |
Wang C, Wang X, Dong K, et al. Injectable and responsively degradable hydrogel for personalized photothermal therapy. Biomaterials, 2016, 104: 129-137.
|
29. |
Juhl O, Zhao N, Merife AB, et al. Aptamer-functionalized fibrin hydrogel improves vascular endothelial growth factor release kinetics and enhances angiogenesis and osteogenesis in critically sized cranial defects. ACS Biomater Sci Eng, 2019, 5(11): 6152-6160.
|
30. |
Zhang R, Liu Y, Qi Y, et al. Self-assembled peptide hydrogel scaffolds with VEGF and BMP-2 enhanced in vitro angiogenesis and osteogenesis. Oral Dis, 2022, 28(3): 723-733.
|
31. |
Divband B, Aghazadeh M, Al-Qaim ZH, et al. Bioactive chitosan biguanidine-based injectable hydrogels as a novel BMP-2 and VEGF carrier for osteogenesis of dental pulp stem cells. Carbohydr Polym, 2021, 273: 118589.
|
32. |
Lee SS, Kim JH, Jeong J, et al. Sequential growth factor releasing double cryogel system for enhanced bone regeneration. Biomaterials, 2020, 257: 120223.
|
33. |
Liu C, Yang G, Zhou M, et al. Magnesium ammonium phosphate composite cell-laden hydrogel promotes osteogenesis and angiogenesis in vitro. ACS Omega, 2021, 6(14): 9449-9459.
|
34. |
Zhang X, Huang P, Jiang G, et al. A novel magnesium ion-incorporating dual-crosslinked hydrogel to improve bone scaffold-mediated osteogenesis and angiogenesis. Mater Sci Eng C Mater Biol Appl, 2021, 121: 111868.
|
35. |
Wu J, Zheng K, Huang X, et al. Thermally triggered injectable chitosan/silk fibroin/bioactive glass nanoparticle hydrogels for in-situ bone formation in rat calvarial bone defects. Acta Biomater, 2019, 91: 60-71.
|
36. |
Perez RA, Kim JH, Buitrago JO, et al. Novel therapeutic core-shell hydrogel scaffolds with sequential delivery of cobalt and bone morphogenetic protein-2 for synergistic bone regeneration. Acta Biomater, 2015, 23: 295-308.
|
37. |
Wolf FI, Cittadini A. Chemistry and biochemistry of magnesium. Mol Aspects Med, 2003, 24(1/2/3): 3-9.
|
38. |
Gu Y, Zhang J, Zhang X, et al. Three-dimensional printed Mg-doped β-TCP bone tissue engineering scaffolds: effects of magnesium ion concentration on osteogenesis and angiogenesis in vitro. Tissue Eng Regen Med, 2019, 16(4): 415-429.
|
39. |
Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology, 2011, 283(2/3): 65-87.
|
40. |
Wu C, Zhou Y, Xu M, et al. Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials, 2013, 34(2): 422-433.
|
41. |
Dai Q, Li Q, Gao H, et al. 3D printing of Cu-doped bioactive glass composite scaffolds promotes bone regeneration through activating the HIF-1α and TNF-α pathway of hUVECs. Biomater Sci, 2021, 9(16): 5519-5532.
|
42. |
Yuan Y, Hilliard G, Ferguson T, et al. Cobalt inhibits the interaction between hypoxia-inducible factor-alpha and von Hippel-Lindau protein by direct binding to hypoxia-inducible factor-alpha. J Biol Chem, 2003, 278(18): 15911-15916.
|
43. |
Solanki AK, Lali FV, Autefage H, et al. Bioactive glasses and electrospun composites that release cobalt to stimulate the HIF pathway for wound healing applications. Biomater Res, 2021, 25(1): 1.
|
44. |
Cheng W, Ding Z, Zheng X, et al. Injectable hydrogel systems with multiple biophysical and biochemical cues for bone regeneration. Biomater Sci, 2020, 8(9): 2537-2548.
|
45. |
Wu C, Zhou Y, Chang J, et al. Delivery of dimethyloxallyl glycine in mesoporous bioactive glass scaffolds to improve angiogenesis and osteogenesis of human bone marrow stromal cells. Acta Biomater, 2013, 9(11): 9159-9168.
|
46. |
Yegappan R, Selvaprithiviraj V, Amirthalingam S, et al. Injectable angiogenic and osteogenic carrageenan nanocomposite hydrogel for bone tissue engineering. Int J Biol Macromol, 2019, 122: 320-328.
|
47. |
Smart N, Rossdeutsch A, Riley PR. Thymosin beta4 and angiogenesis: modes of action and therapeutic potential. Angiogenesis, 2007, 10(4): 229-241.
|
48. |
Kraehenbuehl TP, Ferreira LS, Zammaretti P, et al. Cell-responsive hydrogel for encapsulation of vascular cells. Biomaterials, 2009, 30(26): 4318-4324.
|
49. |
Ikeda Y, Tajima S, Yoshida S, et al. Deferoxamine promotes angiogenesis via the activation of vascular endothelial cell function. Atherosclerosis, 2011, 215(2): 339-347.
|
50. |
Wang K, Cheng W, Ding Z, et al. Injectable silk/hydroxyapatite nanocomposite hydrogels with vascularization capacity for bone regeneration. J Mater Sci Tech, 2021, 63: 172-181.
|
51. |
Ostrovidov S, Salehi S, Costantini M, et al. 3D bioprinting in skeletal muscle tissue engineering. Small, 2019, 15(24): e1805530.
|
52. |
Heinrich MA, Liu W, Jimenez A, et al. 3D bioprinting: from benches to translational applications. Small, 2019, 15(23): e1805510.
|
53. |
Mei Q, Rao J, Bei HP, et al. 3D bioprinting photo-crosslinkable hydrogels for bone and cartilage repair. Int J Bioprint, 2021, 7(3): 367.
|
54. |
Anada T, Pan CC, Stahl AM, et al. Vascularized bone-mimetic hydrogel constructs by 3D bioprinting to promote osteogenesis and angiogenesis. Int J Mol Sci, 2019, 20(5): 1096.
|