1. |
Schemitsch EH. Size matters: defining critical in bone defect size!. J Orthop Trauma, 2017, 31(Suppl 5): S20-S22.
|
2. |
Schwartz AM, Schenker ML, Ahn J, et al. Building better bone: the weaving of biologic and engineering strategies for managing bone loss. J Orthop Res, 2017, 35(9): 1855-1864.
|
3. |
Vijayavenkataraman S, Yan WC, Lu WF, et al. 3D bioprinting of tissues and organs for regenerative medicine. Adv Drug Deliv Rev, 2018, 132: 296-332.
|
4. |
Wolf FI, Cittadini A. Chemistry and biochemistry of magnesium. Mol Aspects Med, 2003, 24(1/2/3): 3-9.
|
5. |
de Baaij JH, Hoenderop JG, Bindels RJ. Magnesium in man: implications for health and disease. Physiol Rev, 2015, 95(1): 1-46.
|
6. |
Erem S, Atfi A, Razzaque MS. Anabolic effects of vitamin D and magnesium in aging bone. J Steroid Biochem Mol Biol, 2019, 193: 105400.
|
7. |
Zhao S, Xie K, Guo Y, et al. Fabrication and biological activity of 3D-printed polycaprolactone/magnesium porous scaffolds for critical size bone defect repair. ACS Biomater Sci Eng, 2020, 6(9): 5120-5131.
|
8. |
Liu J, Zeng H, Xiao P, et al. Sustained release of magnesium ions mediated by a dynamic mechanical hydrogel to enhance BMSC proliferation and differentiation. ACS Omega, 2020, 5(38): 24477-24486.
|
9. |
Díaz-Tocados JM, Herencia C, Martínez-Moreno JM, et al. Magnesium chloride promotes osteogenesis through notch signaling activation and expansion of mesenchymal stem cells. Sci Rep, 2017, 7(1): 7839.
|
10. |
Zhang X, Zu H, Zhao D, et al. Ion channel functional protein kinase TRPM7 regulates Mg ions to promote the osteoinduction of human osteoblast via PI3K pathway: In vitro simulation of the bone-repairing effect of Mg-based alloy implant. Acta Biomater, 2017, 63: 369-382.
|
11. |
Hung CC, Chaya A, Liu K, et al. The role of magnesium ions in bone regeneration involves the canonical Wnt signaling pathway. Acta Biomater, 2019, 98: 246-255.
|
12. |
Mammoli F, Castiglioni S, Parenti S, et al. Magnesium is a key regulator of the balance between osteoclast and osteoblast differentiation in the presence of vitamin D₃. Int J Mol Sci, 2019, 20(2): 385.
|
13. |
Zhai Z, Qu X, Li H, et al. The effect of metallic magnesium degradation products on osteoclast-induced osteolysis and attenuation of NF-κB and NFATc1 signaling. Biomaterials, 2014, 35(24): 6299-6310.
|
14. |
Schlundt C, El Khassawna T, Serra A, et al. Macrophages in bone fracture healing: their essential role in endochondral ossification. Bone, 2018, 106: 78-89.
|
15. |
Tan S, Wang Y, Du Y, et al. Injectable bone cement with magnesium-containing microspheres enhances osteogenesis via anti-inflammatory immunoregulation. Bioact Mater, 2021, 6(10): 3411-3423.
|
16. |
Uwitonze AM, Razzaque MS. Role of magnesium in vitamin D activation and function. J Am Osteopath Assoc, 2018, 118(3): 181-189.
|
17. |
Sahota O, Mundey MK, San P, et al. Vitamin D insufficiency and the blunted PTH response in established osteoporosis: the role of magnesium deficiency. Osteoporos Int, 2006, 17(7): 1013-1021.
|
18. |
Wang XY, Guo X, Qu SX, et al. Temporal and spatial CGRP innervation in recombinant human bone morphogenetic protein induced spinal fusion in rabbits. Spine (Phila Pa 1976), 2009, 34(22): 2363-2368.
|
19. |
Zhang Y, Xu J, Ruan YC, et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nat Med, 2016, 22(10): 1160-1169.
|
20. |
Yu H, VandeVord PJ, Mao L, et al. Improved tissue-engineered bone regeneration by endothelial cell mediated vascularization. Biomaterials, 2009, 30(4): 508-517.
|
21. |
Stegen S, van Gastel N, Carmeliet G. Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration. Bone, 2015, 70: 19-27.
|
22. |
Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med, 2003, 9(6): 669-676.
|
23. |
Lapidos KA, Woodhouse EC, Kohn EC, et al. Mg(++)-induced endothelial cell migration: substratum selectivity and receptor-involvement. Angiogenesis, 2001, 4(1): 21-28.
|
24. |
Gu Y, Zhang J, Zhang X, et al. Three-dimensional printed Mg-doped β-TCP bone tissue engineering scaffolds: effects of magnesium ion concentration on osteogenesis and angiogenesis in vitro. Tissue Eng Regen Med, 2019, 16(4): 415-429.
|
25. |
Liu W, Guo S, Tang Z, et al. Magnesium promotes bone formation and angiogenesis by enhancing MC3T3-E1 secretion of PDGF-BB. Biochem Biophys Res Commun, 2020, 528(4): 664-670.
|
26. |
Hamushan M, Cai W, Zhang Y, et al. High-purity magnesium pin enhances bone consolidation in distraction osteogenesis model through activation of the VHL/HIF-1α/VEGF signaling. J Biomater Appl, 2020, 35(2): 224-236.
|
27. |
Lin S, Yang G, Jiang F, et al. A magnesium-enriched 3D culture system that mimics the bone development microenvironment for vascularized bone regeneration. Adv Sci (Weinh), 2019, 6(12): 1900209.
|
28. |
Okike K, Bhattacharyya T. Trends in the management of open fractures. A critical analysis. J Bone Joint Surg Am, 2006, 88(12): 2739-2748.
|
29. |
Xie K, Wang N, Guo Y, et al. Additively manufactured biodegradable porous magnesium implants for elimination of implant-related infections: an in vitro and in vivo study. Bioact Mater, 2021, 8: 140-152.
|
30. |
Ma R, Lai YX, Li L, et al. Bacterial inhibition potential of 3D rapid-prototyped magnesium-based porous composite scaffolds-an in vitro efficacy study. Sci Rep, 2015, 5: 13775.
|
31. |
Noori AJ, Kareem FA. The effect of magnesium oxide nanoparticles on the antibacterial and antibiofilm properties of glass-ionomer cement. Heliyon, 2019, 5(10): e02568.
|
32. |
Zhang YS, Oklu R, Dokmeci MR, et al. Three-dimensional bioprinting strategies for tissue engineering. Cold Spring Harb Perspect Med, 2018, 8(2): a025718.
|
33. |
Cui H, Nowicki M, Fisher JP, et al. 3D bioprinting for organ regeneration. Adv Healthc Mater, 2017, 6(1): 10.1002/adhm. 201601118.
|
34. |
Putra NE, Mirzaali MJ, Apachitei I, et al. Multi-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitution. Acta Biomater, 2020, 109: 1-20.
|
35. |
Fischer M, Joguet D, Robin G, et al. In situ elaboration of a binary Ti-26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders. Mater Sci Eng C Mater Biol Appl, 2016, 62: 852-859.
|
36. |
Jakus AE, Rutz AL, Jordan SW, et al. Hyperelastic “bone”: a highly versatile, growth factor-free, osteoregenerative, scalable, and surgically friendly biomaterial. Sci Transl Med, 2016, 8(358): 358ra127.
|
37. |
Chen S, Shi Y, Zhang X, et al. Biomimetic synthesis of Mg-substituted hydroxyapatite nanocomposites and three-dimensional printing of composite scaffolds for bone regeneration. J Biomed Mater Res A, 2019, 107(11): 2512-2521.
|
38. |
Wu C, Chang J. A review of bioactive silicate ceramics. Biomed Mater, 2013, 8(3): 032001.
|
39. |
Tsai CH, Hung CH, Kuo CN, et al. Improved bioactivity of 3D printed porous titanium alloy scaffold with chitosan/magnesium-calcium silicate composite for orthopaedic applications. Materials (Basel), 2019, 12(2): 203.
|
40. |
Ramakrishna S, Mayer J, Wintermantel E, et al. Biomedical applications of polymer-composite materials: a review. Compos Sci Technol, 2001, 61(9): 1189-224.
|
41. |
Siddiqui N, Asawa S, Birru B, et al. PCL-based composite scaffold matrices for tissue engineering applications. Mol Biotechnol, 2018, 60(7): 506-532.
|
42. |
Dong Q, Zhang M, Zhou X, et al. 3D-printed Mg-incorporated PCL-based scaffolds: a promising approach for bone healing. Mater Sci Eng C Mater Biol Appl, 2021, 129: 112372.
|
43. |
Ma R, Wang W, Yang P, et al. In vitro antibacterial activity and cytocompatibility of magnesium-incorporated poly (lactide-co-glycolic acid) scaffolds. Biomed Eng Online, 2020, 19(1): 12.
|
44. |
Petretta M, Gambardella A, Boi M, et al. Composite scaffolds for bone tissue regeneration based on PCL and Mg-containing bioactive glasses. Biology (Basel), 2021, 10(5): 398.
|
45. |
Lai Y, Li Y, Cao H, et al. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect. Biomaterials, 2019, 197: 207-219.
|
46. |
Chen Z, Mao X, Tan L, et al. Osteoimmunomodulatory properties of magnesium scaffolds coated with β-tricalcium phosphate. Biomaterials, 2014, 35(30): 8553-8565.
|
47. |
Karunakaran R, Ortgies S, Tamayol A, et al. Additive manufacturing of magnesium alloys. Bioact Mater, 2020, 5(1): 44-54.
|
48. |
Wang Y, Fu P, Wang N, et al. Challenges and solutions for the additive manufacturing of biodegradable magnesium implants. Engineering, 2020, 6(11): 1267-1275.
|