1. |
Pinchuk L. The use of polyisobutylene-based polymers in ophthalmology. Bioact Mater, 2021, 10: 185-194.
|
2. |
Zhu JZ, Xiong XW, Du R, et al. Hemocompatibility of drug-eluting coronary stents coated with sulfonated poly (styrene-block-isobutylene-block-styrene). Biomaterials, 2012, 33(33): 8204-8212.
|
3. |
Antosik AK, Piątek A, Wilpiszewska K. Carboxymethylated starch and cellulose derivatives-based film as human skin equivalent for adhesive properties testing. Carbohydr Polym, 2019, 222: 115014.
|
4. |
Huang Q, He P, Wan J, et al. Synthesis of high molecular weight polyisobutylene via cationic polymerize at elevated temperatures. Chin J Polym Sci, 2013, 31(8): 1139-1114.
|
5. |
Kaszas G, Puskas JE, Kennedy JP, et al. Polyisobutylene-containing block copolymers by sequential monomer addition(II): polystyrene-polyisobutylene-polystyrene triblock polymers: synthesis, characterization, and physical properties. J Polym Sci, Part A: Polym Chem Ed, 1991, 29(3): 427.
|
6. |
Barczikai D, Domokos J, Szabó D, et al. Polyisobutylene-new opportunities for medical applications. Molecules, 2021, 26(17): 5207.
|
7. |
姜力, 方小娟, 潘邦伦, 等. 聚异丁烯及其热塑性弹性体: 怎样从工业走向医疗. 中国组织工程研究, 2020, 24(22): 3559-3565.
|
8. |
Sheriff J, Claiborne TE, Tran PL, et al. Physical characterization and platelet interactions under shear flows of a novel thermoset polyisobutylene-based co-polymer. ACS Appl Mater Interfaces, 2015, 7(39): 22058-22066.
|
9. |
Pinchuk L, Wilson GJ, Barry JJ, et al. Medical applications of poly(styrene-block-isobutylene-block-styrene) (“SIBS”). Biomaterials, 2008, 29(4): 448-460.
|
10. |
Kamath KR, Barry JJ, Miller KM. The Taxus drug-eluting stent: a new paradigm in controlled drug delivery. Adv Drug Deliv Rev, 2006, 58(3): 412-436.
|
11. |
Waseda K, Ako J, Kume T, et al. Characteristics of late-acquired incomplete stent apposition: a comparison with first-generation and second-generation drug-eluting stents. J Invasive Cardiol, 2016, 28(8): 323-329.
|
12. |
Gallocher SL, Aguirre AF, Kasyanov V, et al. A novel polymer for potential use in a trileaflet heart valve. J Biomed Mater Res B Appl Biomater, 2006, 79(2): 325-334.
|
13. |
Ono M, Serruys PW, Hara H, et al. 10-year follow-up after revascularization in elderly patients with complex coronary artery disease. J Am Coll Cardiol, 2021, 77(22): 2761-2773.
|
14. |
Teck Lim G, Valente SA, Hart-Spicer CR, et al. New biomaterial as a promising alternative to silicone breast implants. J Mech Behav Biomed Mater, 2013, 5(21): 47-56.
|
15. |
Shauly O, Gould DJ, Patel KM. Microtexture and the cell/biomaterial interface: a systematic review and meta-analysis of capsular contracture and prosthetic breast implants. Aesthet Surg J, 2019, 39(6): 603-614.
|
16. |
Cozzens D, Ojha U, Kulkarni P, et al. Long term in vitro biostability of segmented polyisobutylene-based thermoplastic polyurethanes. J Biomed Mater Res A, 2010, 95A(3): 774-782.
|
17. |
Puskas JE, Chen Y. Biomedical application of commercial polymers and novel polyisobutylene-based thermoplastic elastomers for soft tissue replacement. Biomacromolecules, 2004, 5(4): 1141-1154.
|
18. |
邵毅. 青光眼诊断与治疗规范—2017 年英国专家共识解读. 眼科新进展, 2018, 38(11): 1001-1004.
|
19. |
乔云圣, 陈君毅. 晶状体手术在原发性闭角型青光眼治疗中的发展现状. 国际眼科杂志, 2020, 20(9): 1533-1538.
|
20. |
王宁利, 王怀洲. 新型微创抗青光眼手术推广过程中应严格掌握适应证. 中华眼科杂志, 2021, 57(9): 641-643.
|
21. |
Richter GM, Coleman AL. Minimally invasive glaucoma surgery: current status and future prospects. Clin Ophthalmol, 2016, 28(10): 189-206.
|
22. |
Batlle JF, Corona A, Albuquerque R. Long-term results of the PRESERFLO microshunt in patients with primary open-angle glaucoma from a single-center nonrandomized study. J Glaucoma, 2021, 30(3): 281-286.
|
23. |
Acosta AC, Espana EM, Yamamoto H, et al. A newly designed glaucoma drainage implant made of poly(styrene-b-isobutylene-b-styrene): biocompatibility and function in normal rabbit eyes. Arch Ophthalmol, 2006, 124(12): 1742-1749.
|
24. |
Pinchuk L, Riss I, Batlle JF, et al. The development of a micro-shunt made from poly(styrene-block-isobutylene-block-styrene) to treat glaucoma. J Biomed Mater Res B Appl Biomater, 2017, 105(1): 211-221.
|
25. |
Sadruddin O, Pinchuk L, Angeles R, et al. Ab externo implantation of the MicroShunt, a poly (styrene-block-isobutylene-block-styrene) surgical device for the treatment of primary open-angle glaucoma: a review. Eye Vis (Lond), 2019, 15(6): 36.
|
26. |
Durr GM, Schlenker MB, Samet S, et al. One-year outcomes of stand-alone ab externo SIBS microshunt implantation in refractory glaucoma. Br J Ophthalmol, 2022, 106(1): 71-79.
|
27. |
Batlle JF, Fantes F, Riss I, et al. Three-year follow-up of a novel aqueous humor MicroShunt. J Glaucoma, 2016, 25(2): e58-e65.
|
28. |
Schlenker MB, Durr GM, Michaelov E, et al. Intermediate outcomes of a novel standalone Ab externo SIBS microshunt with mitomycin C. Am J Ophthalmol, 2020, 215: 141-153.
|
29. |
Gedde SJ, Schiffman JC, Feuer WJ, et al. Three-year follow-up of the tube versus trabeculectomy study. Am J Ophthalmol, 2009, 148(5): 670-684.
|
30. |
Rauscher FM, Gedde SJ, Schiffman JC, et al. Motility disturbances in the tube versus trabeculectomy study during the first year of follow-up. Am J Ophthalmol, 2009, 147(3): 458-466.
|
31. |
Pinchuk L, Riss I, Batlle JF, et al. The use of poly(styrene-block-isobutylene-block-styrene) as a microshunt to treat glaucoma. Regen Biomater, 2016, 3(2): 137-142.
|
32. |
中华医学会眼科学分会白内障及人工晶状体学组. 中国人工晶状体分类专家共识(2021 年). 中华眼科杂志, 2021, 57(7): 495-501.
|
33. |
Matsushima H, Mukai K, Nagata M, et al. Analysis of surface whitening of extracted hydrophobic acrylic intraocular lenses. J Cataract Refract Surg, 2009, 35(11): 1927-1934.
|
34. |
Matsushima H, Nagata M, Katsuki Y, et al. Decreased visual acuity resulting from glistening and sub-surface nano-glistening formation in intraocular lenses: a retrospective analysis of 5 cases. Saudi J Ophthalmol, 2015, 29(4): 259-263.
|
35. |
Colin J, Orignac I, Touboul D. Glistenings in a large series of hydrophobic acrylic intraocular lenses. J Cataract Refract Surg, 2009, 35(12): 2121-2126.
|
36. |
西安眼得乐医疗科技有限公司. 用于生物医学用途的交联聚烯烃及其制造方法: CN105330775B. 2018-09-07.
|
37. |
Maedel S, Evans JR, Harrer-Seely A, et al. Intraocular lens optic edge design for the prevention of posterior capsule opacification after cataract surgery. Cochrane Database Syst Rev, 2021, 8(8): CD012516.
|
38. |
van der Mooren M, Franssen L, Piers P. Effects of glistenings in intraocular lenses. Biomed Opt Express, 2013, 4(8): 1294-1304.
|
39. |
Kirwan C, Nolan JM, Stack J, et al. Determinants of patient satisfaction and function related to vision following cataract surgery in eyes with no visually consequential ocular co-morbidity. Graefes Arch Clin Exp Ophthalmol, 2015, 253(10): 1735-1744.
|
40. |
Saylor DM, Coleman Richardson D, Dair BJ, et al. Osmotic cavitation of elastomeric intraocular lenses. Acta Biomater, 2010, 6(3): 1090-1098.
|
41. |
Tse DT, Pinchuk L, Davis S, et al. Evaluation of an integrated orbital tissue expander in an anophthalmic feline model. Am J Ophthalmol, 2007, 143(2): 317-327.
|
42. |
Zetterberg M. Age-related eye disease and gender. Maturitas, 2016, 83: 19-26.
|
43. |
Fittipaldi M, Grace LR. Modeling the effects of lipid contamination in poly(styrene-isobutylene-styrene) (SIBS). J Mech Behav Biomed Mater, 2018, 80: 97-103.
|