1. |
Siu SC, Silversides CK. Bicuspid aortic valve disease. J Am Coll Cardiol, 2010, 55(25): 2789-2800.
|
2. |
Michelena HI, Khanna AD, Mahoney D, et al. Incidence of aortic complications in patients with bicuspid aortic valves. JAMA, 2011, 306(10): 1104-1112.
|
3. |
Verma S, Siu SC. Aortic dilatation in patients with bicuspid aortic valve. N Engl J Med, 2014, 370(20): 1920-1929.
|
4. |
Ferencik M, Pape LA. Changes in size of ascending aorta and aortic valve function with time in patients with congenitally bicuspid aortic valves. Am J Cardiol, 2003, 92(1): 43-46.
|
5. |
Beroukhim RS, Kruzick TL, Taylor AL, et al. Progression of aortic dilation in children with a functionally normal bicuspid aortic valve. Am J Cardiol, 2006, 98(6): 828-830.
|
6. |
Davis S, Meltzer PS. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics, 2007, 23(14): 1846-1847.
|
7. |
Hirata Y, Aoki H, Shojima T, et al. Activation of the AKT pathway in the ascending aorta with bicuspid aortic valve. Circ J, 2018, 82(10): 2485-2492.
|
8. |
Wickham H. ggplot2: elegant graphics for data analysis. 2nd ed. New York: Springer, 2016: 189-201.
|
9. |
Tang Y, Horikoshi M, Li W. Ggfortify: unified interface to visualize statistical results of popular R packages. R J, 2016, 8(2): 474-485.
|
10. |
Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res, 2015, 43(7): e47.
|
11. |
Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A, 2005, 102(43): 15545-15550.
|
12. |
Gennady K, Vladimir S, Nikolay B, et al. Fast gene set enrichment analysis. (2016-06-20)[2021-02-01]. https://www.biorxiv.org/content/10.1101/060012v3.
|
13. |
Wu T, Hu E, Xu S, et al. ClusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Camb), 2021, 2(3): 100141.
|
14. |
Newman AM, Steen CB, Liu CL, et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol, 2019, 37(7): 773-782.
|
15. |
LeMaire SA, Wang X, Wilks JA, et al. Matrix metalloproteinases in ascending aortic aneurysms: bicuspid versus trileaflet aortic valves. J Surg Res, 2005, 123(1): 40-48.
|
16. |
de Sa M, Moshkovitz Y, Butany J, et al. Histologic abnormalities of the ascending aorta and pulmonary trunk in patients with bicuspid aortic valve disease: clinical relevance to the ross procedure. J Thorac Cardiovasc Surg, 1999, 118(4): 588-594.
|
17. |
Fedak PW, de Sa MP, Verma S, et al. Vascular matrix remodeling in patients with bicuspid aortic valve malformations: implications for aortic dilatation. J Thorac Cardiovasc Surg, 2003, 126(3): 797-806.
|
18. |
Messner B, Bernhard D. Bicuspid aortic valve-associated aortopathy: where do we stand?. J Mol Cell Cardiol, 2019, 133: 76-85.
|
19. |
Holbro T, Hynes NE. ErbB receptors: directing key signaling networks throughout life. Annu Rev Pharmacol Toxicol, 2004, 44: 195-217.
|
20. |
Barrick CJ, Roberts RB, Rojas M, et al. Reduced EGFR causes abnormal valvular differentiation leading to calcific aortic stenosis and left ventricular hypertrophy in C57BL/6J but not 129S1/SvImJ mice. Am J Physiol Heart Circ Physiol, 2009, 297(1): H65-H75.
|
21. |
Schreier B, Rabe S, Schneider B, et al. Loss of epidermal growth factor receptor in vascular smooth muscle cells and cardiomyocytes causes arterial hypotension and cardiac hypertrophy. Hypertension, 2013, 61(2): 333-340.
|
22. |
Krause M, Leslie JD, Stewart M, et al. Lamellipodin, an Ena/VASP ligand, is implicated in the regulation of lamellipodial dynamics. Dev Cell, 2004, 7(4): 571-583.
|
23. |
Li H, Wu X, Hou S, et al. Phosphatidylinositol-3, 4-bisphosphate and its binding protein lamellipodin regulate chemotaxis of malignant B lymphocytes. J Immunol, 2016, 196(2): 586-595.
|
24. |
Brazzo JA, Biber JC, Nimmer E, et al. Mechanosensitive expression of lamellipodin promotes intracellular stiffness, cyclin expression and cell proliferation. J Cell Sci, 2021, 134(12): jcs257709.
|
25. |
Vehlow A, Soong D, Vizcay-Barrena G, et al. Endophilin, lamellipodin, and mena cooperate to regulate F-actin-dependent EGF-receptor endocytosis. EMBO J, 2013, 32(20): 2722-2734.
|
26. |
Nguyen TB, Manova K, Capodieci P, et al. Characterization and expression of mammalian cyclin b3, a prepachytene meiotic cyclin. J Biol Chem, 2002, 277(44): 41960-41969.
|
27. |
Davis MM. A new trigger for T cells. Cell, 2002, 110(3): 285-287.
|
28. |
Borroto A, Lama J, Niedergang F, et al. The CD3ε subunit of the TCR contains endocytosis signals. J Immunol, 1999, 163(1): 25-31.
|
29. |
Vadas O, Dbouk HA, Shymanets A, et al. Molecular determinants of PI3Kγ-mediated activation downstream of G-protein-coupled receptors (GPCRs). Proc Natl Acad Sci U S A, 2013, 110(47): 18862-18867.
|
30. |
Voigt P, Brock C, Nürnberg B, et al. Assigning functional domains within the p101 regulatory subunit of phosphoinositide 3-kinase gamma. J Biol Chem, 2005, 280(6): 5121-5127.
|
31. |
Fernandez-Alonso R, Martin-Lopez M, Gonzalez-Cano L, et al. p73 is required for endothelial cell differentiation, migration and the formation of vascular networks regulating VEGF and TGFβ signaling. Cell Death Differ, 2015, 22(8): 1287-1299.
|
32. |
Sabapathy K. p73: a positive or negative regulator of angiogenesis, or both?. Mol Cell Biol, 2015, 36(6): 848-854.
|
33. |
Maeso-Alonso L, López-Ferreras L, Marques MM, et al. p73 as a tissue architect. Front Cell Dev Biol, 2021, 9: 716957.
|
34. |
Hooper C, Tavassoli M, Chapple JP, et al. TAp73 isoforms antagonize Notch signalling in SH-SY5Y neuroblastomas and in primary neurones. J Neurochem, 2006, 99(3): 989-999.
|
35. |
Rufini A, Niklison-Chirou MV, Inoue S, et al. TAp73 depletion accelerates aging through metabolic dysregulation. Genes Dev, 2012, 26(18): 2009-2014.
|
36. |
Billaud M, Phillippi JA, Kotlarczyk MP, et al. Elevated oxidative stress in the aortic media of patients with bicuspid aortic valve. J Thorac Cardiovasc Surg, 2017, 154(5): 1756-1762.
|
37. |
Balint B, Yin H, Nong Z, et al. Seno-destructive smooth muscle cells in the ascending aorta of patients with bicuspid aortic valve disease. EBioMedicine, 2019, 43: 54-66.
|
38. |
Gao Z, Zhong M, Ye Z, et al. PAK3 promotes the metastasis of hepatocellular carcinoma by regulating EMT process. J Cancer, 2022, 13(1): 153-161.
|
39. |
Navarro-Corcuera A, Ansorena E, Montiel-Duarte C, et al. AGAP2: modulating TGFβ1-signaling in the regulation of liver fibrosis. Int J Mol Sci, 2020, 21(4): 1400.
|
40. |
Navarro-Corcuera A, López-Zabalza MJ, Martínez-Irujo JJ, et al. Role of AGAP2 in the profibrogenic effects induced by TGFβ in LX-2 hepatic stellate cells. Biochim Biophys Acta Mol Cell Res, 2019, 1866(4): 673-685.
|
41. |
Zhu Y, Wu Y, Kim JI, et al. Arf GTPase-activating protein AGAP2 regulates focal adhesion kinase activity and focal adhesion remodeling. J Biol Chem, 2009, 284(20): 13489-13496.
|
42. |
Ahn JY, Rong R, Kroll TG, et al. PIKE (phosphatidylinositol 3-kinase enhancer)-A GTPase stimulates Akt activity and mediates cellular invasion. J Biol Chem, 2004, 279(16): 16441-16451.
|
43. |
Wang Y, Südhof TC. Genomic definition of RIM proteins: evolutionary amplification of a family of synaptic regulatory proteins. Genomics, 2003, 81(2): 126-137.
|
44. |
Jiang-Xie LF, Liao HM, Chen CH, et al. Autism-associated gene Dlgap2 mutant mice demonstrate exacerbated aggressive behaviors and orbitofrontal cortex deficits. Mol Autism, 2014, 5: 32.
|
45. |
Björck HM, Du L, Pulignani S, et al. Altered DNA methylation indicates an oscillatory flow mediated epithelial-to-mesenchymal transition signature in ascending aorta of patients with bicuspid aortic valve. Sci Rep, 2018, 8(1): 2777.
|
46. |
Forester ND, Cruickshank SM, Scott DJ, et al. Increased natural killer cell activity in patients with an abdominal aortic aneurysm. Br J Surg, 2006, 93(1): 46-54.
|