1. |
中华医学会心血管病学分会介入心脏病学组, 中国医师协会心血管内科医师分会血栓防治专业委员会, 中华心血管病杂志编辑委员会. 中国经皮冠状动脉介入治疗指南(2016). 中华心血管病杂志, 2016, 44(5): 382-400.
|
2. |
《中国冠状动脉血流储备分数测定技术临床路径专家共识》专家组. 中国冠状动脉血流储备分数测定技术临床路径专家共识. 中国介入心脏病学杂志, 2019, 27(3): 121-133.
|
3. |
Zimmermann FM, Ferrara A, Johnson NP, et al. Deferral vs. performance of percutaneous coronary intervention of functionally non-significant coronary stenosis:15-year follow-up of the DEFER trial. Eur Heart J, 2015, 36(45): 3182-3188.
|
4. |
Muller O, Mangiacapra F, Ntalianis A, et al. Long-term follow-up after fractional flow reserve-guided treatment strategy in patients with an isolated proximal left anterior descending coronary artery stenosis. JACC Cardiovasc Interv, 2011, 4(11): 1175-1182.
|
5. |
Pijls NH, Fearon WF, Tonino PA, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) study. J Am Coll Cardiol, 2010, 56(3): 177-184.
|
6. |
van Nunen LX, Zimmermann FM, Tonino PA, et al. Fractional flow reserve versus angiography for guidance of PCI in patients with multivessel coronary artery disease (FAME): 5-year follow-up of a randomised controlled trial. Lancet, 2015, 386(10006): 1853-1860.
|
7. |
De Bruyne B, Pijls NH, Kalesan B, et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med, 2012, 367(11): 991-1001.
|
8. |
涂圣贤. 定量血流分数的原理与应用//第十二届东方心脏病学术会议论文集, 2018: 128-132.
|
9. |
Song L, Tu S, Sun Z, et al. Quantitative flow ratio-guided strategy versus angiography-guided strategy for percutaneous coronary intervention: rationale and design of the FAVOR III China trial. Am Heart J, 2020, 223: 72-80.
|
10. |
Tang J, Chu J, Hou H, et al. Clinical implication of QFR in patients with ST-segment elevation myocardial infarction after drug-eluting stent implantation. Int J Cardiovasc Imaging, 2021, 37(3): 755-766.
|
11. |
Biscaglia S, Tebaldi M, Brugaletta S, et al. Prognostic value of QFR measured immediately after successful stent implantation: the international multicenter prospective HAWKEYE study. JACC Cardiovasc Interv, 2019, 12(20): 2079-2088.
|
12. |
Bär S, Kavaliauskaite R, Ueki Y, et al. Quantitative flow ratio to predict nontarget vessel-related events at 5 years in patients with ST-segment-elevation myocardial infarction undergoing angiography-guided revascularization. J Am Heart Assoc, 2021, 10(9): e019052.
|
13. |
Milzi A, Dettori R, Marx N, et al. Quantitative flow ratio (QFR) identifies functional relevance of non-culprit lesions in coronary angiographies of patients with acute myocardial infarction. Clin Res Cardiol, 2021, 110(10): 1659-1667.
|
14. |
Tu S, Westra J, Yang J, et al. Diagnostic accuracy of fast computational approaches to derive fractional flow reserve from diagnostic coronary angiography: the international multicenter FAVOR pilot study. JACC Cardiovasc Interv, 2016, 9(19): 2024-2035.
|
15. |
Westra J, Tu S, Winther S, et al. Evaluation of coronary artery stenosis by quantitative flow ratio during invasive coronary angiography: the WIFI II study (Wire-Free Functional Imaging II). Circ Cardiovasc Imaging, 2018, 11(3): e007107.
|
16. |
Westra J, Andersen BK, Campo G, et al. Diagnostic performance of in-procedure angiography-derived quantitative flow reserve compared to pressure-derived fractional flow reserve: the FAVOR II Europe-Japan study. J Am Heart Assoc, 2018, 7(14): e009603.
|
17. |
van Diemen PA, Driessen RS, Kooistra RA, et al. Comparison between the performance of quantitative flow ratio and perfusion imaging for diagnosing myocardial ischemia. JACC Cardiovasc Imaging, 2020, 13(9): 1976-1985.
|
18. |
Peper J, van Hamersvelt RW, Rensing BJWM, et al. Diagnostic performance and clinical implications for enhancing a hybrid quantitative flow ratio-FFR revascularization decision-making strategy. Sci Rep, 2021, 11(1): 6425.
|
19. |
Tu S, Ding D, Chang Y, et al. Diagnostic accuracy of quantitative flow ratio for assessment of coronary stenosis significance from a single angiographic view: a novel method based on bifurcation fractal law. Catheter Cardiovasc Interv, 2021, 97(Suppl 2): 1040-1047.
|
20. |
Mejía-Rentería H, Lee JM, Lauri F, et al. Influence of microcirculatory dysfunction on angiography-based functional assessment of coronary stenoses. JACC Cardiovasc Interv, 2018, 11(8): 741-753.
|
21. |
Chen L, Chen Q, Zhong J, et al. Effect of low-density lipoprotein cholesterol goal achievement on vascular physiology evaluated by quantitative flow ratio in patients who underwent percutaneous coronary intervention. Front Cardiovasc Med, 2021, 8: 679599.
|
22. |
Emori H, Kubo T, Kameyama T, et al. Diagnostic accuracy of quantitative flow ratio for assessing myocardial ischemia in prior myocardial infarction. Circ J, 2018, 82(3): 807-814.
|
23. |
Mejía-Rentería H, Lauri FM, Lee JM, et al. Interindividual variations in the adenosine-induced hemodynamics during fractional flow reserve evaluation: implications for the use of quantitative flow ratio in assessing intermediate coronary stenoses. J Am Heart Assoc, 2019, 8(16): e012906.
|
24. |
Westra J, Eftekhari A, Tu S, et al. Resting distal to aortic pressure ratio and fractional flow reserve discordance affects the diagnostic performance of quantitative flow ratio: results from an individual patient data meta-analysis. Catheter Cardiovasc Interv, 2021, 97(5): 825-832.
|
25. |
Westra J, Sejr-Hansen M, Koltowski L, et al. Reproducibility of quantitative flow ratio: the QREP study. EuroIntervention, 2022, 17(15): 1252-1259.
|