1. |
Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med, 2019, 25(1): 44-56.
|
2. |
Attia ZI, Harmon DM, Behr ER, et al. Application of artificial intelligence to the electrocardiogram. Eur Heart J, 2021, 42(46): 4717-4730.
|
3. |
Goto S, Goto S. Application of neural networks to 12-lead electrocardiography-current status and future directions. Circ Rep, 2019, 1(11): 481-486.
|
4. |
Ribeiro AH, Ribeiro MH, Paixão GMM, et al. Automatic diagnosis of the 12-lead ECG using a deep neural network. Nat Commun, 2020, 11(1): 1760.
|
5. |
Hannun AY, Rajpurkar P, Haghpanahi M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med, 2019, 25(1): 65-69.
|
6. |
Chang KC, Hsieh PH, Wu MY, et al. Usefulness of machine learning-based detection and classification of cardiac arrhythmias with 12-lead electrocardiograms. Can J Cardiol, 2021, 37(1): 94-104.
|
7. |
Zhu H, Cheng C, Yin H, et al. Automatic multilabel electrocardiogram diagnosis of heart rhythm or conduction abnormalities with deep learning: a cohort study. Lancet Digit Health, 2020, 2(7): e348-e357.
|
8. |
Siontis KC, Noseworthy PA, Attia ZI, et al. Artificial intelligence-enhanced electrocardiography in cardiovascular disease management. Nat Rev Cardiol, 2021, 18(7): 465-478.
|
9. |
Murat F, Sadak F, Yildirim O, et al. Review of deep learning-based atrial fibrillation detection studies. Int J Environ Res Public Health, 2021, 18(21): 11302.
|
10. |
Bahrami Rad A, Galloway C, Treiman D, et al. Atrial fibrillation detection in outpatient electrocardiogram monitoring: an algorithmic crowdsourcing approach. PLoS One, 2021, 16(11): e0259916.
|
11. |
Rabinstein AA, Yost MD, Faust L, et al. Artificial intelligence-enabled ECG to identify silent atrial fibrillation in embolic stroke of unknown source. J Stroke Cerebrovasc Dis, 2021, 30(9): 105998.
|
12. |
Baek YS, Lee SC, Choi W, et al. A new deep learning algorithm of 12-lead electrocardiogram for identifying atrial fibrillation during sinus rhythm. Sci Rep, 2021, 11(1): 12818.
|
13. |
Suzuki S, Motogi J, Nakai H, et al. Identifying patients with atrial fibrillation during sinus rhythm on ECG: significance of the labeling in the artificial intelligence algorithm. Int J Cardiol Heart Vasc, 2022, 38: 100954.
|
14. |
Melzi P, Tolosana R, Cecconi A, et al. Analyzing artificial intelligence systems for the prediction of atrial fibrillation from sinus-rhythm ECGs including demographics and feature visualization. Sci Rep, 2021, 11(1): 22786.
|
15. |
Khurshid S, Friedman S, Reeder C, et al. ECG-based deep learning and clinical risk factors to predict atrial fibrillation. Circulation, 2022, 145(2): 122-133.
|
16. |
Senoner T, Pfeifer B, Barbieri F, et al. Identifying the location of an accessory pathway in pre-excitation syndromes using an artificial intelligence-based algorithm. J Clin Med, 2021, 10(19): 4394.
|
17. |
Zheng J, Fu G, Abudayyeh I, et al. A high-precision machine learning algorithm to classify left and right outflow tract ventricular tachycardia. Front Physiol, 2021, 12: 641066.
|
18. |
Zhao Y, Xiong J, Hou Y, et al. Early detection of ST-segment elevated myocardial infarction by artificial intelligence with 12-lead electrocardiogram. Int J Cardiol, 2020, 317: 223-230.
|
19. |
Liu WC, Lin C, Lin CS, et al. An artificial intelligence-based alarm strategy facilitates management of acute myocardial infarction. J Pers Med, 2021, 11(11): 1149.
|
20. |
Gibson CM, Mehta S, Ceschim MRS, et al. Evolution of single-lead ECG for STEMI detection using a deep learning approach. Int J Cardiol, 2022, 346: 47-52.
|
21. |
Katsushika S, Kodera S, Nakamoto M, et al. The effectiveness of a deep learning model to detect left ventricular systolic dysfunction from electrocardiograms. Int Heart J, 2021, 62(6): 1332-1341.
|
22. |
Vaid A, Johnson KW, Badgeley MA, et al. Using deep-learning algorithms to simultaneously identify right and left ventricular dysfunction from the electrocardiogram. JACC Cardiovasc Imaging, 2021, 15(3): 395-410.
|
23. |
Yao X, Rushlow DR, Inselman JW, et al. Artificial intelligence-enabled electrocardiograms for identification of patients with low ejection fraction: a pragmatic, randomized clinical trial. Nat Med, 2021, 27(5): 815-819.
|
24. |
Ko WY, Siontis KC, Attia ZI, et al. Detection of hypertrophic cardiomyopathy using a convolutional neural network-enabled electrocardiogram. J Am Coll Cardiol, 2020, 75(7): 722-733.
|
25. |
Siontis KC, Liu K, Bos JM, et al. Detection of hypertrophic cardiomyopathy by an artificial intelligence electrocardiogram in children and adolescents. Int J Cardiol, 2021, 340: 42-47.
|
26. |
Shrivastava S, Cohen-Shelly M, Attia ZI, et al. Artificial intelligence-enabled electrocardiography to screen patients with dilated cardiomyopathy. Am J Cardiol, 2021, 155: 121-127.
|
27. |
Gumpfer N, Grün D, Hannig J, et al. Detecting myocardial scar using electrocardiogram data and deep neural networks. Biol Chem, 2021, 402(8): 911-923.
|
28. |
Cohen-Shelly M, Attia ZI, Friedman PA, et al. Electrocardiogram screening for aortic valve stenosis using artificial intelligence. Eur Heart J, 2021, 42(30): 2885-2896.
|
29. |
Sawano S, Kodera S, Katsushika S, et al. Deep learning model to detect significant aortic regurgitation using electrocardiography. J Cardiol, 2022, 79(3): 334-341.
|
30. |
Kwon JM, Kim KH, Akkus Z, et al. Artificial intelligence for detecting mitral regurgitation using electrocardiography. J Electrocardiol, 2020, 59: 151-157.
|