1. |
Susantitaphong P, Cruz DN, Cerda J, et al. World incidence of AKI: a meta-analysis. Clin J Am Soc Nephrol, 2013, 8(9): 1482-1493.
|
2. |
Chang YM, Chou YT, Kan WC, et al. Sepsis and acute kidney injury: a review focusing on the bidirectional interplay. Int J Mol Sci, 2022, 23(16): 9159.
|
3. |
Ruas AFL, Lébeis GM, de Castro NB, et al. Acute kidney injury in pediatrics: an overview focusing on pathophysiology. Pediatr Nephrol, 2022, 37(9): 2037-2052.
|
4. |
Guo C, Dong G, Liang X, et al. Epigenetic regulation in AKI and kidney repair: mechanisms and therapeutic implications. Nat Rev Nephrol, 2019, 15(4): 220-239.
|
5. |
Dellepiane S, Marengo M, Cantaluppi V. Detrimental cross-talk between sepsis and acute kidney injury: new pathogenic mechanisms, early biomarkers and targeted therapies. Crit Care, 2016, 20: 61.
|
6. |
Boström P, Wu J, Jedrychowski MP, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature, 2012, 481(7382): 463-468.
|
7. |
Waseem R, Shamsi A, Mohammad T, et al. FNDC5/irisin: physiology and pathophysiology. Molecules, 2022, 27(3): 1118.
|
8. |
Liu Y, Fu Y, Liu Z, et al. Irisin is induced in renal ischemia-reperfusion to protect against tubular cell injury via suppressing p53. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(7): 165792.
|
9. |
Jin YH, Li ZY, Jiang XQ, et al. Irisin alleviates renal injury caused by sepsis via the NF-κB signaling pathway. Eur Rev Med Pharmacol Sci, 2020, 24(11): 6470-6476.
|
10. |
Shao L, Meng D, Yang F, et al. Irisin-mediated protective effect on LPS-induced acute lung injury via suppressing inflammation and apoptosis of alveolar epithelial cells. Biochem Biophys Res Commun, 2017, 487(2): 194-200.
|
11. |
Tsuchiya Y, Ando D, Goto K, et al. High-intensity exercise causes greater irisin response compared with low-intensity exercise under similar energy consumption. Tohoku J Exp Med, 2014, 233(2): 135-140.
|
12. |
Zhang Y, Li R, Meng Y, et al. Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes, 2014, 63(2): 514-525.
|
13. |
Korta P, Pocheć E, Mazur-Biały A. Irisin as a multifunctional protein: implications for health and certain diseases. Medicina (Kaunas), 2019, 55(8): 485.
|
14. |
Daudon M, Bigot Y, Dupont J, et al. Irisin and the fibronectin type Ⅲ domain-containing family: structure, signaling and role in female reproduction. Reproduction, 2022, 164(1): R1-R9.
|
15. |
Zhao R. Irisin at the crossroads of inter-organ communications: challenge and implications. Front Endocrinol (Lausanne), 2022, 13: 989135.
|
16. |
Matsuo Y, Gleitsmann K, Mangner N, et al. Fibronectin type Ⅲ domain containing 5 expression in skeletal muscle in chronic heart failure-relevance of inflammatory cytokines. J Cachexia Sarcopenia Muscle, 2015, 6(1): 62-72.
|
17. |
Kurdiova T, Balaz M, Vician M, et al. Effects of obesity, diabetes and exercise on Fndc5 gene expression and irisin release in human skeletal muscle and adipose tissue: in vivo and in vitro studies. J Physiol, 2014, 592(5): 1091-1107.
|
18. |
Luo Y, Qiao X, Xu L, et al. Irisin: circulating levels in serum and its relation to gonadal axis. Endocrine, 2022, 75(3): 663-671.
|
19. |
Lee HJ, Lee JO, Kim N, et al. Irisin, a novel myokine, regulates glucose uptake in skeletal muscle cells via AMPK. Mol Endocrinol, 2015, 29(6): 873-881.
|
20. |
Luna-Ceron E, González-Gil AM, Elizondo-Montemayor L. Current insights on the role of irisin in endothelial dysfunction. Curr Vasc Pharmacol, 2022, 20(3): 205-220.
|
21. |
Zheng S, Chen N, Kang X, et al. Irisin alleviates FFA induced β-cell insulin resistance and inflammatory response through activating PI3K/AKT/FOXO1 signaling pathway. Endocrine, 2022, 75(3): 740-751.
|
22. |
毛楠, 周琬秋, 任思冲, 等. 鸢尾素与急性肾损伤的相关性研究. 成都医学院学报, 2022, 17(2): 174-179.
|
23. |
Sadeghi Shad J, Akbari R, Qujeq D, et al. Measurement of serum irisin in the different stages of chronic kidney disease. Caspian J Intern Med, 2019, 10(3): 314-319.
|
24. |
Csiky B, Sági B, Emmert V, et al. Cardiometabolic effects of irisin in patients with end-stage renal disease on regular hemo- or peritoneal dialysis. Blood Purif, 2022, 51(5): 450-457.
|
25. |
邵雯, 李荣山, 周晓霜. 维持性血液透析合并肌少症患者血清鸢尾素的变化. 华西医学, 2020, 35(7): 788-793.
|
26. |
Arcidiacono T, Magni G, Macrina L, et al. Serum irisin may predict cardiovascular events in elderly patients with chronic kidney disease stage 3-5. J Ren Nutr, 2022, 32(3): 282-291.
|
27. |
Malek M, Nematbakhsh M. Renal ischemia/reperfusion injury; from pathophysiology to treatment. J Renal Inj Prev, 2015, 4(2): 20-27.
|
28. |
Bi J, Yang L, Wang T, et al. Irisin improves autophagy of aged hepatocytes via increasing telomerase activity in liver injury. Oxid Med Cell Longev, 2020, 2020: 6946037.
|
29. |
Zhang J, Bi J, Ren Y, et al. Involvement of GPX4 in irisin’s protection against ischemia reperfusion-induced acute kidney injury. J Cell Physiol, 2021, 236(2): 931-945.
|
30. |
Qiongyue Z, Xin Y, Meng P, et al. Post-treatment with irisin attenuates acute kidney injury in sepsis mice through anti-ferroptosis via the SIRT1/Nrf2 pathway. Front Pharmacol, 2022, 13: 857067.
|
31. |
Jin Z, Guo P, Li X, et al. Neuroprotective effects of irisin against cerebral ischemia/reperfusion injury via Notch signaling pathway. Biomed Pharmacother, 2019, 120: 109452.
|
32. |
Zhang R, Ji J, Zhou X, et al. Irisin pretreatment protects kidneys against acute kidney injury induced by ischemia/reperfusion via upregulating the expression of uncoupling protein 2. Biomed Res Int, 2020, 2020: 6537371.
|
33. |
Fan H, Su BJ, Le JW, et al. Salidroside protects acute kidney injury in septic rats by inhibiting inflammation and apoptosis. Drug Des Devel Ther, 2022, 16: 899-907.
|
34. |
Baisantry A, Berkenkamp B, Rong S, et al. Time-dependent p53 inhibition determines senescence attenuation and long-term outcome after renal ischemia-reperfusion. Am J Physiol Renal Physiol, 2019, 316(6): F1124-F1132.
|
35. |
Friederich M, Fasching A, Hansell P, et al. Diabetes-induced up-regulation of uncoupling protein-2 results in increased mitochondrial uncoupling in kidney proximal tubular cells. Biochim Biophys Acta, 2008, 1777(7/8): 935-940.
|
36. |
Zhou Y, Cai T, Xu J, et al. UCP2 attenuates apoptosis of tubular epithelial cells in renal ischemia-reperfusion injury. Am J Physiol Renal Physiol, 2017, 313(4): F926-F937.
|
37. |
Gwon DH, Hwang TW, Ro JY, et al. High endogenous accumulation of ω-3 polyunsaturated fatty acids protect against ischemia-reperfusion renal injury through AMPK-mediated autophagy in fat-1 mice. Int J Mol Sci, 2017, 18(10): 2081.
|
38. |
Formigari GP, Dátilo MN, Vareda B, et al. Renal protection induced by physical exercise may be mediated by the irisin/AMPK axis in diabetic nephropathy. Sci Rep, 2022, 12(1): 9062.
|
39. |
Zunner BEM, Wachsmuth NB, Eckstein ML, et al. Myokines and resistance training: a narrative review. Int J Mol Sci, 2022, 23(7): 3501.
|
40. |
Wu F, Li Z, Cai M, et al. Aerobic exercise alleviates oxidative stress-induced apoptosis in kidneys of myocardial infarction mice by inhibiting ALCAT1 and activating FNDC5/irisin signaling pathway. Free Radic Biol Med. 2020, 158: 171-180.
|
41. |
Ortega-Lozano AJ, Jiménez-Uribe AP, Aranda-Rivera AK, et al. Expression profiles of kidney mitochondrial proteome during the progression of the unilateral ureteral obstruction: focus on energy metabolism adaptions. Metabolites, 2022, 12(10): 936.
|
42. |
Peng H, Wang Q, Lou T, et al. Myokine mediated muscle-kidney crosstalk suppresses metabolic reprogramming and fibrosis in damaged kidneys. Nat Commun, 2017, 8(1): 1493.
|