1. |
Zhao H, Xie Y, Wang J, et al. Pulmonary rehabilitation for pneumoconiosis: protocol for a systematic review and meta-analysis. BMJ Open, 2019, 9(8): e025891.
|
2. |
Li J, Yin P, Wang H, et al. The burden of pneumoconiosis in China: an analysis from the Global Burden of Disease Study 2019. BMC Public Health, 2022, 22(1): 1114.
|
3. |
Spruit MA, Singh SJ, Garvey C, et al. An official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitation. Am J Respir Crit Care Med, 2013, 188(8): e13-e64.
|
4. |
Hanada M, Sakamoto N, Ishimoto H, et al. A comparative study of the sarcopenia screening in older patients with interstitial lung disease. BMC Pulm Med, 2022, 22(1): 45.
|
5. |
世界中医药学会联合会肺康复专业委员会, 呼吸疾病中医药防治省部共建协同创新中心, 河南中医药大学. 尘肺病康复专家共识(2021 版). 中国循证医学杂志, 2021, 21(9): 1000-1007.
|
6. |
中国医师协会呼吸医师分会, 中华医学会呼吸病学分会, 中国康复医学会呼吸康复专业委员会, 等. 中国慢性呼吸道疾病呼吸康复管理指南(2021 年). 中华健康管理学杂志, 2021, 15(6): 521-538.
|
7. |
Singh S, Sharma BB, Bairwa M, et al. Management of interstitial lung diseases: a consensus statement of the Indian Chest Society (ICS) and National College of Chest Physicians (NCCP). Lung India, 2020, 37(4): 359-378.
|
8. |
Wen J, Milne S, Sin DD. Pulmonary rehabilitation in a postcoronavirus disease 2019 world: feasibility, challenges, and solutions. Curr Opin Pulm Med, 2022, 28(2): 152-161.
|
9. |
Vanka KS, Shukla S, Gomez HM, et al. Understanding the pathogenesis of occupational coal and silica dust-associated lung disease. Eur Respir Rev, 2022, 31(165): 210250.
|
10. |
Quan H, Wu W, Yang G, et al. Risk factors of silicosis progression: a retrospective cohort study in China. Front Med (Lausanne), 2022, 9: 832052.
|
11. |
Nakazawa A, Cox NS, Holland AE. Current best practice in rehabilitation in interstitial lung disease. Ther Adv Respir Dis, 2017, 11(2): 115-128.
|
12. |
Molgat-Seon Y, Guler SA, Peters CM, et al. Pectoralis muscle area and its association with indices of disease severity in interstitial lung disease. Respir Med, 2021, 186: 106539.
|
13. |
Mendoza L, Gogali A, Shrikrishna D, et al. Quadriceps strength and endurance in fibrotic idiopathic interstitial pneumonia. Respirology, 2014, 19(1): 138-143.
|
14. |
Philippova A, Aringazina R, Kurmanalina G, et al. Epidemiology, clinical and physiological manifestations of dust lung disease in major industrial centers. Emerg Themes Epidemiol, 2022, 19(1): 3.
|
15. |
Jenkins AR, Gowler H, Curtis F, et al. Efficacy of supervised maintenance exercise following pulmonary rehabilitation on health care use: a systematic review and meta-analysis. Int J Chron Obstruct Pulmon Dis, 2018, 13: 257-273.
|
16. |
Zhao H, Xie Y, Wang J, et al. Pulmonary rehabilitation can improve the functional capacity and quality of life for pneumoconiosis patients: a systematic review and meta-analysis. Biomed Res Int, 2020, 2020: 6174936.
|
17. |
Halabchi F, Alizadeh Z, Sahraian MA, et al. Exercise prescription for patients with multiple sclerosis; potential benefits and practical recommendations. BMC Neurol, 2017, 17(1): 185.
|
18. |
Li X, Yu R, Wang P, et al. Effects of exercise training on cardiopulmonary function and quality of life in elderly patients with pulmonary fibrosis: a meta-analysis. Int J Environ Res Public Health, 2021, 18(14): 7643.
|
19. |
Dowman LM, McDonald CF, Hill CJ, et al. The evidence of benefits of exercise training in interstitial lung disease: a randomised controlled trial. Thorax, 2017, 72(7): 610-619.
|
20. |
Essam H, Abdel Wahab NH, Younis G, et al. Effects of different exercise training programs on the functional performance in fibrosing interstitial lung diseases: a randomized trial. PLoS One, 2022, 17(5): e0268589.
|
21. |
Oldenburger A, Teschler H, Teschler S, et al. Effects of outpatient compact rehabilitation on physical performance and quality of life in patients with work-related lung diseases. Pneumologie, 2022, 76(1): 35-46.
|
22. |
Fekete M, Fazekas-Pongor V, Balazs P, et al. Role of new digital technologies and telemedicine in pulmonary rehabilitation: smart devices in the treatment of chronic respiratory diseases. Wien Klin Wochenschr, 2021, 133(21/22): 1201-1207.
|
23. |
Stuart T, Hanna J, Gutruf P. Wearable devices for continuous monitoring of biosignals: challenges and opportunities. APL Bioeng, 2022, 6(2): 021502.
|
24. |
Holland AE, Malaguti C, Hoffman M, et al. Home-based or remote exercise testing in chronic respiratory disease, during the COVID-19 pandemic and beyond: a rapid review. Chron Respir Dis, 2020, 17: 1479973120952418.
|
25. |
Motta LP, Silva PPFD, Borguezan BM, et al. An emergency system for monitoring pulse oximetry, peak expiratory flow, and body temperature of patients with COVID-19 at home: development and preliminary application. PLoS One, 2021, 16(3): e0247635.
|
26. |
McNamara RJ, Dale M, McKeough ZJ. Innovative strategies to improve the reach and engagement in pulmonary rehabilitation. J Thorac Dis, 2019, 11(Suppl 17): S2192-S2199.
|
27. |
Moor CC, van Leuven SI, Wijsenbeek MS, et al. Feasibility of online home spirometry in systemic sclerosis-associated interstitial lung disease: a pilot study. Rheumatology (Oxford), 2021, 60(5): 2467-2471.
|
28. |
Li J, Li X, Deng M, et al. Features and predictive value of 6-min walk test outcomes in interstitial lung disease: an observation study using wearable monitors. BMJ Open, 2022, 12(6): e055077.
|
29. |
Moor CC, Mostard RLM, Grutters JC, et al. Home monitoring in patients with idiopathic pulmonary fibrosis. A randomized controlled trial. Am J Respir Crit Care Med, 2020, 202(3): 393-401.
|
30. |
Attaway AH, Welch N, Yadav R, et al. Quantitative computed tomography assessment of pectoralis and erector spinae muscle area and disease severity in chronic obstructive pulmonary disease referred for lung volume reduction. COPD, 2021, 18(2): 191-200.
|
31. |
Yılmaz Çankaya B, Karaman A, et al. The association of silicosis severity with pectoralis major muscle and subcutaneous fat volumes and the pulmonary artery/aorta ratio evaluated by CT. Diagn Interv Radiol, 2021, 27(1): 37-41.
|
32. |
Tsang EW, Kwok H, Chan AKY, et al. Outcomes of community-based and home-based pulmonary rehabilitation for pneumoconiosis patients: a retrospective study. BMC Pulm Med, 2018, 18(1): 133.
|
33. |
程乐霞, 李萍, 米正萍. 基于 Heider 平衡理论的远程教育干预在尘肺病患者中的应用效果分析. 工业卫生与职业病, 2021, 47(2): 110-113.
|
34. |
彭秋凤, 何静春, 李立宇, 等. 远程指导运动呼吸训练在稳定期Ⅱ期尘肺病患者中的实施效果观察. 山东医药, 2022, 62(33): 64-67.
|
35. |
Layton AM, Irwin AM, Mihalik EC, et al. Telerehabilitation using fitness application in patients with severe cystic fibrosis awaiting lung transplant: a pilot study. Int J Telemed Appl, 2021, 2021: 6641853.
|
36. |
Dechman G, Aceron R, Beauchamp M, et al. Delivering pulmonary rehabilitation during the COVID-19 pandemic: a Canadian Thoracic Society position statement. Can J Resp Crit Care, 2020, 4(4): 232-235.
|
37. |
Geramita EM, DeVito Dabbs AJ, DiMartini AF, et al. Impact of a mobile health intervention on long-term nonadherence after lung transplantation: follow-up after a randomized controlled trial. Transplantation, 2020, 104(3): 640-651.
|
38. |
Kılıç L, Pehlivan E, Balcı A, et al. Effect of 8-week pulmonary rehabilitation program on dyspnea and functional capacity of patients on waiting list for lung transplantation. Turk Thorac J, 2020, 21(2): 110-115.
|
39. |
Wickerson L, Helm D, Gottesman C, et al. Telerehabilitation for lung transplant candidates and recipients during the COVID-19 pandemic: program evaluation. JMIR Mhealth Uhealth, 2021, 9(6): e28708.
|
40. |
Dowman L, Hill CJ, May A, et al. Pulmonary rehabilitation for interstitial lung disease. Cochrane Database Syst Rev, 2021, 2(2): CD006322.
|
41. |
Cox NS, Dal Corso S, Hansen H, et al. Telerehabilitation for chronic respiratory disease. Cochrane Database Syst Rev, 2021, 1(1): CD013040.
|