1. |
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
|
2. |
Yang JD, Hainaut P, Gores GJ, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol, 2019, 16(10): 589-604.
|
3. |
Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet, 2018, 391(10127): 1301-1314.
|
4. |
Du A, Li S, Zhou Y, et al. M6A-mediated upregulation of circMDK promotes tumorigenesis and acts as a nanotherapeutic target in hepatocellular carcinoma. Mol Cancer, 2022, 21(1): 109.
|
5. |
Tang W, Chen Z, Zhang W, et al. The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects. Signal Transduct Target Ther, 2020, 5(1): 87.
|
6. |
Lei G, Zhuang L, Gan B. Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer, 2022, 22(7): 381-396.
|
7. |
Li J, Cao F, Yin HL, et al. Ferroptosis: past, present and future. Cell Death Dis, 2020, 11(2): 88.
|
8. |
Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282.
|
9. |
Xu S, He Y, Lin L, et al. The emerging role of ferroptosis in intestinal disease. Cell Death Dis, 2021, 12(4): 289.
|
10. |
Zhao L, Zhou X, Xie F, et al. Ferroptosis in cancer and cancer immunotherapy. Cancer Commun (Lond), 2022, 42(2): 88-116.
|
11. |
Chen X, Kang R, Kroemer G, et al. Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol, 2021, 18(5): 280-296.
|
12. |
Zhang C, Liu X, Jin S, et al. Ferroptosis in cancer therapy: a novel approach to reversing drug resistance. Mol Cancer, 2022, 21(1): 47.
|
13. |
Dolma S, Lessnick SL, Hahn WC, et al. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. J Cancer Cell, 2003, 3: 285-296.
|
14. |
Yagoda N, von Rechenberg M, Zaganjor E, et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature, 2007, 447(7146): 864-868.
|
15. |
Tang D, Kroemer G. Ferroptosis. Curr Biol, 2020, 30(21): R1292-R1297.
|
16. |
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5): 1060-1072.
|
17. |
Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ, 2018, 25(3): 486-541.
|
18. |
刘磊, 贾少晗, 于鹏. 线粒体在铁死亡中的形态特征和作用. 中国生物化学与分子生物学报, 2023, 39(6): 769-777.
|
19. |
Dixon SJ, Stockwell BR. The role of iron and reactive oxygen species in cell death. Nat Chem Biol, 2014, 10(1): 9-17.
|
20. |
Wang H, Cheng Y, Mao C, et al. Emerging mechanisms and targeted therapy of ferroptosis in cancer. Mol Ther, 2021, 29(7): 2185-2208.
|
21. |
Doll S, Proneth B, Tyurina YY, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol, 2017, 13(1): 91-98.
|
22. |
Skoupilová H, Michalová E, Hrstka R. Ferroptosis as a new type of cell death and its role in cancer treatment. Klin Onkol, 2018, 31(Suppl 2): 21-26.
|
23. |
Luo Y, Bai XY, Zhang L, et al. Ferroptosis in cancer therapy: mechanisms, small molecule inducers, and novel approaches. Drug Des Devel Ther, 2024, 18: 2485-2529.
|
24. |
Jiang S, Zhang G, Ma Y, et al. Ferroptosis in hepatocellular carcinoma, from mechanism to effect. Front Oncol, 2024, 14: 1350011.
|
25. |
Du L, Wu Y, Jia Q, et al. Autophagy suppresses ferroptosis by degrading TFR1 to alleviate cognitive dysfunction in mice with SAE. Cell Mol Neurobiol, 2023, 43(7): 3605-3622.
|
26. |
Qu L, He X, Tang Q, et al. Iron metabolism, ferroptosis, and lncRNA in cancer: knowns and unknowns. J Zhejiang Univ Sci B, 2022, 23(10): 844-862.
|
27. |
Shen H, Zhai L, Wang G. Hepcidin regulates neuronal ferroptosis: a mechanism for postoperative cognitive dysfunction. J Biochem Mol Toxicol, 2022, 36(11): e23190.
|
28. |
Feng H, Stockwell BR. Unsolved mysteries: how does lipid peroxidation cause ferroptosis?. PLoS Biol, 2018, 16(5): e2006203.
|
29. |
Liu M, Kong XY, Yao Y, et al. The critical role and molecular mechanisms of ferroptosis in antioxidant systems: a narrative review. Ann Transl Med, 2022, 10(6): 368.
|
30. |
Hong Y, Feng J, Dou Z, et al. Berberine as a novel ACSL4 inhibitor to suppress endothelial ferroptosis and atherosclerosis. Biomed Pharmacother, 2024, 177: 117081.
|
31. |
Hao J, Wang T, Cao C, et al. LPCAT3 exacerbates early brain injury and ferroptosis after subarachnoid hemorrhage in rats. Brain Res, 2024, 1832: 148864.
|
32. |
Yu H, Guo P, Xie X, et al. Ferroptosis, a new form of cell death, and its relationships with tumourous diseases. J Cell Mol Med, 2017, 21(4): 648-657.
|
33. |
Fearnhead HO, Vandenabeele P, Vanden Berghe T. How do we fit ferroptosis in the family of regulated cell death?. Cell Death Differ, 2017, 24(12): 1991-1998.
|
34. |
Liu J, Kang R, Tang D. Signaling pathways and defense mechanisms of ferroptosis. FEBS J, 2022, 289(22): 7038-7050.
|
35. |
Seibt TM, Proneth B, Conrad M. Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med, 2019, 133: 144-152.
|
36. |
Hu Q, Zhang Y, Lou H, et al. GPX4 and vitamin E cooperatively protect hematopoietic stem and progenitor cells from lipid peroxidation and ferroptosis. Cell Death Dis, 2021, 12(7): 706.
|
37. |
Yao Y, Chen Z, Zhang H, et al. Selenium-GPX4 axis protects follicular helper T cells from ferroptosis. Nat Immunol, 2021, 22(9): 1127-1139.
|
38. |
Yang WS, SriRamaratnam R, Welsch ME, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell, 2014, 156(1/2): 317-331.
|
39. |
黄煜超, 叶芬. 铁死亡在肿瘤发展和治疗中的作用机制. 肿瘤学杂志, 2023, 29(2): 150-155.
|
40. |
Jiang L, Kon N, Li T, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature, 2015, 520(7545): 57-62.
|
41. |
Zhang F, Xiao Y, Huang Z, et al. Upregulation of GPX4 drives ferroptosis resistance in scleroderma skin fibroblasts. Free Radic Biol Med, 2024, 221: 23-30.
|
42. |
王欣雨, 岳源, 胡译戈, 等. 肿瘤治疗中铁死亡的作用. 中华肿瘤防治杂志, 2023, 30(13): 820-826.
|
43. |
Liang C, Zhang X, Yang M, et al. Recent progress in ferroptosis inducers for cancer therapy. Adv Mater, 2019, 31(51): e1904197.
|
44. |
Liu M, Fan Y, Li D, et al. Ferroptosis inducer erastin sensitizes NSCLC cells to celastrol through activation of the ROS-mitochondrial fission-mitophagy axis. Mol Oncol, 2021, 15(8): 2084-2105.
|
45. |
Su Y, Zhao B, Zhou L, et al. Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs. Cancer Lett, 2020, 483: 127-136.
|
46. |
Zhang Y, Tan H, Daniels JD, et al. Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model. Cell Chem Biol, 2019, 26(5): 623-633. e9.
|
47. |
Song X, Zhu S, Chen P, et al. AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc- activity. Curr Biol, 2018, 28(15): 2388-2399.
|
48. |
Yang WS, Stockwell BR. Ferroptosis: death by lipid peroxidation. Trends Cell Biol, 2016, 26(3): 165-176.
|
49. |
Sun Y, Berleth N, Wu W, et al. Fin56-induced ferroptosis is supported by autophagy-mediated GPX4 degradation and functions synergistically with mTOR inhibition to kill bladder cancer cells. Cell Death Dis, 2021, 12(11): 1028.
|
50. |
张申武, 单新竹, 孙新新, 等. 基于纳米递送技术诱导肿瘤铁死亡的研究进展. 药学学报, 2022, 57(1): 36-45, 275.
|
51. |
Shen Z, Liu T, Li Y, et al. Fenton-reaction-acceleratable magnetic nanoparticles for ferroptosis therapy of orthotopic brain tumors. ACS Nano, 2018, 12(11): 11355-11365.
|
52. |
Yuan H, Xia P, Sun X, et al. Photothermal nanozymatic nanoparticles induce ferroptosis and apoptosis through tumor microenvironment manipulation for cancer therapy. Small, 2022, 18(41): e2202161.
|
53. |
Li B, Chen X, Qiu W, et al. Synchronous disintegration of ferroptosis defense axis via engineered exosome-conjugated magnetic nanoparticles for glioblastoma therapy. Adv Sci (Weinh), 2022, 9(17): e2105451.
|
54. |
Gaschler MM, Andia AA, Liu H, et al. FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat Chem Biol, 2018, 14(5): 507-515.
|
55. |
Zilka O, Shah R, Li B, et al. On the mechanism of cytoprotection by ferrostatin-1 and liproxstatin-1 and the role of lipid peroxidation in ferroptotic cell death. ACS Cent Sci, 2017, 3(3): 232-243.
|
56. |
Schreiber R, Buchholz B, Kraus A, et al. Lipid peroxidation drives renal cyst growth in vitro through activation of TMEM16A. J Am Soc Nephrol, 2019, 30(2): 228-242.
|
57. |
Bogdan AR, Miyazawa M, Hashimoto K, et al. Regulators of iron homeostasis: new players in metabolism, cell death, and disease. Trends Biochem Sci, 2016, 41(3): 274-286.
|
58. |
Sun J, Lin XM, Lu DH, et al. Midbrain dopamine oxidation links ubiquitination of glutathione peroxidase 4 to ferroptosis of dopaminergic neurons. J Clin Invest, 2023, 133(10): e165228.
|
59. |
Xie Y, Zhu S, Song X, et al. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep, 2017, 20(7): 1692-1704.
|
60. |
Zheng H, Jiang J, Xu S, et al. Nanoparticle-induced ferroptosis: detection methods, mechanisms and applications. Nanoscale, 2021, 13(4): 2266-2285.
|
61. |
Wang Y, Quan F, Cao Q, et al. Quercetin alleviates acute kidney injury by inhibiting ferroptosis. J Adv Res, 2020, 28: 231-243.
|
62. |
闫莉. 隐丹参酮通过铁死亡抑制三阴性乳腺癌的机制研究. 上海: 中国人民解放军海军军医大学, 2021.
|
63. |
Wang Z, Chen X, Liu N, et al. A nuclear long non-coding RNA LINC00618 accelerates ferroptosis in a manner dependent upon apoptosis. Mol Ther, 2021, 29(1): 263-274.
|
64. |
Xu Y, Li Y, Li J, et al. Ethyl carbamate triggers ferroptosis in liver through inhibiting GSH synthesis and suppressing Nrf2 activation. Redox Biol, 2022, 53: 102349.
|
65. |
孙小蝶, 秦勇, 刘璐琳, 等. 丁酸钠通过诱导铁死亡抑制肝癌细胞增殖. 营养学报, 2023, 45(2): 157-162.
|
66. |
陶磊, 王迪, 疏树华. 丙泊酚抑制肝癌细胞增殖和迁移的作用及其铁死亡通路机制的研究. 分子诊断与治疗杂志, 2022, 14(12): 2036-2039, 2043.
|
67. |
洪婷, 王依蕾, 曾海荣, 等. 葫芦素 B 诱导细胞铁死亡抑制肝癌 Huh-7 细胞增殖的机制. 中国药理学通报, 2023, 39(4): 638-645.
|
68. |
Zheng Y, Huang C, Lu L, et al. STOML2 potentiates metastasis of hepatocellular carcinoma by promoting PINK1-mediated mitophagy and regulates sensitivity to lenvatinib. J Hematol Oncol, 2021, 14(1): 16.
|
69. |
Tang B, Wang Y, Zhu J, et al. TACE responser NDRG1 acts as a guardian against ferroptosis to drive tumorgenesis and metastasis in HCC. Biol Proced Online, 2023, 25(1): 13.
|
70. |
Huang Q, Li J, Ma M, et al. High-throughput screening identification of a small-molecule compound that induces ferroptosis and attenuates the invasion and migration of hepatocellular carcinoma cells by targeting the STAT3/GPX4 axis. Int J Oncol, 2023, 62(3): 42.
|
71. |
Chen LC, Lin HY, Hung SK, et al. Role of modern radiotherapy in managing patients with hepatocellular carcinoma. World J Gastroenterol, 2021, 27(20): 2434-2457.
|
72. |
王婷安, 吴留成, 韦尉元, 等. 铁死亡调控通路及其在肿瘤放化疗和免疫治疗抵抗中的研究进展. 中国癌症防治杂志, 2022, 14(6): 682-686.
|
73. |
Yang M, Wu X, Hu J, et al. COMMD10 inhibits HIF1α/CP loop to enhance ferroptosis and radiosensitivity by disrupting Cu-Fe balance in hepatocellular carcinoma. J Hepatol, 2022, 76(5): 1138-1150.
|
74. |
Yuan Y, Cao W, Zhou H, et al. CLTRN, regulated by NRF1/RAN/DLD protein complex, enhances radiation sensitivity of hepatocellular carcinoma cells through ferroptosis pathway. Int J Radiat Oncol Biol Phys, 2021, 110(3): 859-871.
|
75. |
Chen Q, Zheng W, Guan J, et al. SOCS2-enhanced ubiquitination of SLC7A11 promotes ferroptosis and radiosensitization in hepatocellular carcinoma. Cell Death Differ, 2023, 30(1): 137-151.
|
76. |
Feng H, Liu Y, Gan Y, et al. AdipoR1 regulates ionizing radiation-induced ferroptosis in HCC cells through Nrf2/xCT pathway. Oxid Med Cell Longev, 2022, 2022: 8091464.
|
77. |
Boucher E, Corbinais S, Brissot P, et al. Treatment of hepatocellular carcinoma (HCC) with systemic chemotherapy combining epirubicin, cisplatinum and infusional 5-fluorouracil (ECF regimen). Cancer Chemother Pharmacol, 2002, 50(4): 305-308.
|
78. |
Kang X, Huo Y, Jia S, et al. Silenced LINC01134 enhances oxaliplatin sensitivity by facilitating ferroptosis through GPX4 in hepatocarcinoma. Front Oncol, 2022, 12: 939605.
|
79. |
Chen M, Li J, Shu G, et al. Homogenous multifunctional microspheres induce ferroptosis to promote the anti-hepatocarcinoma effect of chemoembolization. J Nanobiotechnology, 2022, 20(1): 179.
|
80. |
Sangro B, Sarobe P, Hervás-Stubbs S, et al. Advances in immunotherapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol, 2021, 18(8): 525-543.
|
81. |
Hao X, Zheng Z, Liu H, et al. Inhibition of APOC1 promotes the transformation of M2 into M1 macrophages via the ferroptosis pathway and enhances anti-PD1 immunotherapy in hepatocellular carcinoma based on single-cell RNA sequencing. Redox Biol, 2022, 56: 102463.
|
82. |
Conche C, Finkelmeier F, Pešić M, et al. Combining ferroptosis induction with MDSC blockade renders primary tumours and metastases in liver sensitive to immune checkpoint blockade. Gut, 2023, 72(9): 1774-1782.
|
83. |
Mintz KJ, Leblanc RM. The use of nanotechnology to combat liver cancer: progress and perspectives. Biochim Biophys Acta Rev Cancer, 2021, 1876(2): 188621.
|
84. |
Wu H, Wang MD, Liang L, et al. Nanotechnology for hepatocellular carcinoma: from surveillance, diagnosis to management. Small, 2021, 17(6): e2005236.
|
85. |
Yu Y, Shen X, Xiao X, et al. Butyrate modification promotes intestinal absorption and hepatic cancer cells targeting of ferroptosis inducer loaded nanoparticle for enhanced hepatocellular carcinoma therapy. Small, 2023, 19(36): e2301149.
|
86. |
Liu J, Li X, Chen J, et al. Arsenic-loaded biomimetic iron oxide nanoparticles for enhanced ferroptosis-inducing therapy of hepatocellular carcinoma. ACS Appl Mater Interfaces, 2023, 15(5): 6260-6273.
|
87. |
Fang C, Liu S, Feng K, et al. Ferroptosis-related lncRNA signature predicts the prognosis and immune microenvironment of hepatocellular carcinoma. Sci Rep, 2022, 12(1): 6642.
|
88. |
Shan Y, Yang G, Huang H, et al. Ubiquitin-like modifier activating enzyme 1 as a novel diagnostic and prognostic indicator that correlates with ferroptosis and the malignant phenotypes of liver cancer cells. Front Oncol, 2020, 10: 592413.
|